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Abstract

I'study the welfare-maximizing allocation of heterogeneous goods when monetary trans-
fers are prohibited. Agents have private cardinal values, and the designer chooses a non-
monetary mechanism subject to incentive compatibility and aggregate supply constraints. I
characterize implementable allocations and give sufficient conditions under which the op-
timum coincides with a competitive equilibrium with equal incomes (CEEI). When these
conditions fail, I characterize the optimum for two symmetric goods. I show that when nar-
row preference margins between goods predict greater need, the designer can sometimes
benefit from distorting CEEI by offering a menu containing pure options and bundles.

1 Introduction

When designing mechanisms without transfers, it is often natural to evaluate them using crite-
ria that avoid interpersonal utility comparisons. This approach is especially appealing when the
policymaker has explicitly non-welfarist goals (such as fairness) or when participants’ cardinal
valuations for the allocated goods are plausibly similar. Indeed, the literature on mechanisms
without money has largely focused on notions based on Pareto efficiency and ordinal welfare
rankings.! Nevertheless, criteria agnostic to cardinal values are less fitting for settings like so-
cial programs, where policymakers view applicants as differing sharply in terms of need and
aim to target those for whom receiving the goods has the greatest social value. For instance,
affordable housing programs in many European countries serve a broad population, including
families facing eviction as well as middle-class households with stable employment (White-
head and Scanlon, 2007). In the U.S. context, Cook et al. (2023) find that affordable housing
recipients differ substantially in various measures of need, and that this heterogeneity persists
even after conditioning on observables.

This paper studies a mechanism design problem without transfers where the designer has a
prior over agents’ cardinal values for the allocated goods. She possesses a fixed supply of N
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different kinds of goods and aims to distribute them among a unit mass of agents to maximize
utilitarian welfare. Importantly, agents” valuations are their private information; this prevents
the designer from simply giving the available supply to those who need it most. Indeed, hand-
ing out larger allocations to agents who claim to have higher values would incentivize everyone
to make such claims.

The designer can, however, elicit agents’ relative preferences, that is, how much they value
some goods compared to others, or how much it matters to them which option they receive.
This information can be especially helpful when such preference patterns are correlated with
agents’ absolute level of need. Relationships of that sort are common in the context of social
programs. For instance, Cook et al. (2023) find that lower-income households are less selective
when applying for affordable housing, that is, they are more willing to trade off assignment to
a preferred unit for a higher probability of receiving an offer somewhere. 1 show that optimal
mechanisms sometimes exploit such statistical relationships: when participants with higher
cardinal valuations tend to have weaker relative preferences, the designer can reward them
with larger mixed bundles that “pickier” types are not willing to accept. In other settings,
however, the correlation between preference intensities and absolute valuations is likely to be
reversed. Consider, for example, school choice environments with specialized curricula such as
dual-language immersion. Families who place disproportionate weight on admission to such
programs often do so because of the child’s idiosyncratic needs, aptitudes, or interests. Thus,
intense relative preference for a particular option plausibly signals higher absolute value for it.
When this is the case, offering mixed bundles is likely to be suboptimal.

I prove three main results. First, I characterize which allocations are implementable in the
no-transfer environment. After renormalizing types to the simplex of relative values, I show
that an indirect utility function is implementable if and only if it satisfies the usual convexity
requirement together with an additional ratio-monotonicity restriction that has no counterpart
in the quasilinear model with transfers.

Second, I consider the mechanism implementing a competitive equilibrium with equal incomes
(CEEI). In a CEEI, each agent receives the same artificial budget and purchases her preferred
bundle at market-clearing prices. Despite the fact that the designer has access to a rich space of
mechanisms, I show that the CEEI mechanism is exactly welfare-maximizing for a non-trivial
class of distributions. The sufficient conditions for its optimality are stated as a stochastic-
dominance comparison on appropriately-constructed signed measures. I also derive a simpler
condition in the special case of symmetric goods: the CEEI mechanism is optimal if agents
whose cardinal values for their favorite goods are higher tend to be more selective, in a precise
stochastic sense. Intuitively, when this is the case, any distortion away from the CEEI, which
is the unique implementable Pareto-efficient allocation, reallocates resources toward relatively
less-deserving types.

Third, I fully characterize the welfare-maximizing mechanism in the case of two symmetric
goods. Here the renormalization effectively makes types one-dimensional, which eliminates



the complications of multidimensional screening. I show that in such a setting, the optimal
mechanism has an especially simple form: it either offers two “pure” options consisting of one
type of good only, or introduces a third option: a larger mixed bundle that combines the two
goods in equal proportions. The mixed option screens on the strength of relative preferences:
types with narrower margins across goods are more willing to accept mixing and therefore
self-select into the larger bundle. This distortion is welfare-improving precisely when weaker
margins are sufficiently predictive of higher total value, so that the informational gain from
targeting outweighs the allocative inefficiency from mixing.

My paper contributes to the literature on allocating heterogeneous goods without transfers,
and connects most directly to the work on pseudo-markets and CEEIL Hylland and Zeckhauser
(1979) introduce CEEI as a solution concept for assignment problems. Budish (2011) proposes
an approximate CEEI mechanism for combinatorial assignment (such as course schedules), and
Budish et al. (2017) document a large-scale implementation. In environments with priorities
and related constraints, He et al. (2018) propose a pseudo-market that uses token budgets and
priority-dependent prices to produce a fair and constrained-efficient random assignment.

While the literature on allocating heterogeneous goods without transfers has focused mainly
on (ex ante and ex post) Pareto efficiency and ordinal efficiency properties, a smaller body of
work allows for cardinal objectives and looks for mechanisms that maximize them (Miralles,
2012; Chakravarty and Kaplan, 2013; Ashlagi and Shi, 2016; Dogan and Uyanik, 2020; Akyol,
2025). My paper is the closest to Miralles (2012), who studies welfare-maximizing mechanisms
with cardinal utilities in a symmetric, two-good setting with finite agents. He shows that while
the welfare optimum can deviate from CEEI in finite markets, CEEI becomes optimal in a large-
market limit under additional regularity conditions. In this sense, the departures from CEEI
in Miralles (2012) are a small-sample phenomenon, and thus arise for reasons logically distinct
from those I study. My results are therefore complementary to his: while I focus on large mar-
kets, I show that without his regularity condition mechanisms other than CEEI can be optimal
for screening reasons.

Finally, my paper relates to work on eliciting preference intensities—information about how
strongly agents prefer some options over others. In school choice, Abdulkadiroglu et al. (2011)
observe that the Boston mechanism can elicit the extent to which families prefer certain schools—
a property that deferred acceptance does not have. In a paper closely related to mine, Ortoleva
et al. (2021) consider optimal mechanisms in a setting without transfers where agents have a
common ranking over goods but differ in their sensitivity to quality. My paper, by contrast,
does not impose such structure and considers heterogeneously differentiated goods. This leads
to different and complementary results. Indeed, the authors show that the first-best allocations
may offer lotteries between qualities, and that second-best allocations always involve lotteries
and may involve free disposal; neither of these results holds in my setting. Similarly to my
work, they show that CEEI allocations, despite being Pareto-efficient, do not always maximize
weighted welfare.



Finally, my paper builds on methods developed in the multidimensional screening literature.
My characterization of implementability extends that of Rochet (1987) to settings without trans-
fers. To derive conditions for the optimality of CEEI, I invoke ideas used in the study of the
multi-product monopoly problem (Armstrong, 1996; Rochet and Choné, 1998; Manelli and Vin-
cent, 2006). In particular, my certificate of optimality relies on stochastic dominance and trans-
port arguments related to those in Daskalakis et al. (2013, 2017).

The rest of the paper is structured as follows. Section 2 presents the general model and Section 3
illustrates its core intuitions with simple two-good examples. Then, Section 4 characterizes im-
plementable mechanisms in the general case. The subsequent part of the paper focuses on
the mechanism corresponding to a competitive equilibrium with equal incomes (CEEI): Sec-
tion 6 defines the CEEI mechanism and gives sufficient conditions for its optimality in the N-
good case. Section 7 specializes the model to two symmetric goods and fully characterizes the
welfare-maximizing mechanism. Finally, Section 8 discusses the implications of the results for
market design, with a focus on public housing lotteries.

2 Model

The designer has N different kinds of goods indexed by i € {1,..., N} with N > 2. She possesses
a fixed mass of each, with the supplies given by s = (s1,52,...,55) > 0. There is a unit mass of
agents, each of whom has a profile of values v = (v1,vy,...,vy) for the goods; the values are
private information and come from a bounded set V c RY such that for some € > 0 we have
[0,€]N c V. They are distributed according to a joint distribution F with full support on V. The
designer chooses an allocation rule for the goods, v = (y1,v2,...,yn) : V - RY, to maximize
utilitarian welfare:

| o-y@)dE ). ©)

She faces incentive compatibility and supply constraints:
v-y(v)2v-y(v') forallo,?, (IC)
f y(v)dF(v) <s. S)

An allocation rule y : V — RY that satisfies (IC) is implementable. If this allocation rule also
satisfies (S), I call it feasible.

Remark 1. One might wonder how to understand agents’ cardinal values in a setting where transfers
are not permitted. The model allows for multiple interpretations. First, one can still identify v; with
an agent’s (latent) willingness to pay for a unit of good i. While these values are not directly elicitable
without money, they remain meaningful for the designer’s welfare objective. Second, and more gener-
ally, one can view them as the designer’s subjective conviction about the social value of giving goods to
different agents. For instance, the designer may place higher welfare weights on individuals with certain



characteristics (need, vulnerability, family size, etc.), and believe that these characteristics are correlated
with the pattern of preferences agents reveal over the available goods.

Remark 2. Some allocation problems without money involve unit demand, in which case an allocation
specifies a probability of receiving each good; this is the case e.g. in housing lotteries. While my model
does not impose a probability constraint Y;y;(v) < 1, it nevertheless describes unit-demand environ-
ments where supply is sufficiently scarce relative to the population: in such cases, the designer could not
afford to offer agents any option with certainty, and so every type’s probability constraint would remain
slack. This is a plausible approximation in applications such as public housing lotteries where units are
extremely scarce relative to applicant numbers.

3 Examples

To preview the paper’s core intuitions, I begin with illustrative examples featuring just two
goods. I derive them from Theorems 2 and 3 in Appendix B.

Example 1. Fix any supplies s1,s5 > 0 and let values be distributed uniformly on [0,1]%. Then the
optimal mechanism offers agents two options:

{q10fgood 1}, {g2 of good 2} .

The quantities q1,qy are chosen so that the supply constraint holds with equality when all agents pick
their preferred option.

U2

q20f2
q1 of 1

(%1

Figure 1: Optimal allocation in Example 1.

Under this mechanism, agents for whom q; v1 > g v; select the former option, while those for
whom g1 v1 < g2 v; select the latter. As shown in Figure 1, these two sets of types are separated
by a ray from the origin defined by:
ua_1
voq
Let us note two things about this allocation. First, it can be supported as a competitive equilibrium
with equal incomes. That is, the designer could implement it by running a procedure where each

(1)
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agent is endowed with a unit amount of token currency that she can use to buy goods at market-
clearing prices. In this case, the market-clearing prices will equal p; = 1/4; per unit of good 1
and p, = 1/g, per unit of good 2. Agents below the ray defined by (1) will then spend their
budget on g; of good 1 while those above it will buy g, of good 2.

Second, note that the allocation rule in Example 1 depends only on the ratio of agents” values
for goods 1 and 2, but not on how large v; and v, are in absolute terms. This highlights a
useful distinction: an agent’s absolute values, (vq,v2), capture the overall intensity of need for
the goods, while her relative values, (v1 o +v2) capture how strongly she prefers one good
over another. Crucially, an incentive-compatible mechanism cannot meaningfully elicit abso-
lute values among agents with the same profile of relative values. Indeed, all agents with the
same relative values always rank all offered options the same way. It is thus impossible to give
a better bundle to some of them without also giving it to the others.

The designer can, however, elicit relative values by offering a menu with different bundles of
goods. This motivates the next example:

Example 2. Let 51 = s, and assume values are distributed according to the following density, illustrated
in Figure 2a:

20, (v1,02)€[0,1]2and v1+vy<0.2 0r v1 +v,p > 1.8,
Flo o =1 4

YL (v1,v2) €[0,1]2 and 0.2 < v1 + v < 1.8.

Then the optimal mechanism offers three options:

{qr of good 1}, {qy of good 2}, {— of good 1 and 12 ofgood 2}
for some q < 2s and qy > 2s.

Under this mechanism, each agent can pick between a low amount of their favorite good and
a higher amount of an even mixture of the two goods. Agents with strong relative preferences
between the two goods pick the pure allocations and agents whose preference margins between
goods are narrow choose the mixture.

Here too, all agents with the same relative values (v1 oy v:fvz) receive the same allocation.

However, agents whose relative values are close together choose the bundle and thus receive
higher total allocations. Crucially, these agents also tend to have higher absolute values (vy,v2),
and so the use of bundles gives the designer an incentive-compatible way of directing more
goods to agents in greater need. More generally, doing so can help the designer if relative
and absolute values are statistically related. In such cases, she can sometimes proxy for high
absolute values by offering more attractive options to agents with certain relative preferences.

Note, however, that the optimal allocation in Example 2 is not Pareto-efficient. Indeed, agents
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Figure 2a: Value distribution in Example 2. Figure 2b: Optimal allocation in Example 2.

who get the bundle could profitably trade between themselves so that types above and below
the 45-degree line in Figure 2b get only the good they prefer.

4 Implementability

I now discuss what mechanisms are implementable. First, however, I transform the type space
into a more analytically convenient form. As explained in the previous section, the designer
cannot meaningfully elicit absolute values of agents who share the same profile of relative val-
ues. It is therefore without loss to identify agents’ types with their profile of relative values. Let
I" be the (N - 1)-simplex containing all possible profiles of relative values:

I:={0eRY: Yo,=1}.

Define V as the random variable describing the value vector v of an agent drawn from F and
let © be the following I'-valued random variable:?

1%

© = —.
2 Vi

The renormalization thus maps all sets of types that were identical up to scaling to the same
renormalized type 6 € I'. The distribution of the random variable ® will then pin down that
over our renormalized types. Denote this distribution by G and note that it is the push-forward
of F under the map v~ v/ };v;.

While the designer cannot screen on absolute values, they are still important for her objective.
We will therefore define:

V.
A(0) ::IE[ZV- ‘ —L—=0; foralli ],
v

2Note that we can without loss exclude the 0 type, and so we need not worry about dividing by 0.



which assigns to each renormalized type 6 the expected total value of agents whose types v got
mapped to 6.3 Using this object, we can rewrite the designer’s problem as follows:

Problem 1. Choose an allocation rule x : T — RY to maximize weighted expected utility:

Ja@ uedce), ©)

where U(0) = x(0) -0, subject to:
0-x(0) > 0-x(0") forall 6,0'<T, (IC)
fr x(0)dG(8) < s. )

Indeed, Problem 1 is equivalent to the designer’s original problem in the following sense:

Lemma 1. For any feasible allocation rule y : V - RY, define
x(0) = E[y(V)|©®=0]. (2)

Then x is feasible in Problem 1 and welfare from y equals the (renormalized) welfare from x:

/Vvy(v)dF(v) - /FA(G)B'x(G)dG(G). 3)

Conversely, for any feasible x in Problem 1, the allocation rule y(v) := x(v/ ¥ v;) is feasible for the
original problem and the two allocation rules satisfy (3).

The above reparametrization will let me formulate my first theorem, which specifies the indirect
utility functions U : I' - R, that the designer can implement subject to incentive constraints
(IC"). To that end, I introduce the following definition:

Definition 1. Take 0,0’ € I with 0;,0; > 0. We say 0 is closer to vertex e; than ¢, denoted by 6 >; 0, if
forall k +i:

Intuitively, 6 >; 8’ means that 6 values good i relatively more than does 6’, compared to every
other good (Figure 3).

Theorem 1. A function U : I' - R is an implementable indirect utility function if and only if it is
convex and satisfies the following condition:

uee) | ue)
0 o

3The assumption that F had full support over the hypercube [0,e]" ensures that G has full support over I', and
that A(0) is well-defined and strictly positive everywhere on it.

for every i and every 6,60" in T such that 0 >; ', (R)
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Figure 3: Types in the shaded area are closer to ¢; than ¢’,i.e. 6 >; 6'.

It is not surprising that implementable indirect utility functions U need to be convex, as they
are maxima of affine functions of 0:

_ (0
uee) = nax 0-x(6").

In fact, as shown by Rochet (1987), convexity of indirect utility is both necessary and sufficient
for implementability in settings where transfers are available.

Condition (R), which I call ratio monotonicity, does not have a counterpart in the screening prob-
lem with transfers. Intuitively, it restricts how fast indirect utility U(6) can grow as 6 moves
towards the vertex e¢;. To understand why (R) is necessary for implementability, fix any good i
and two types such that 6 >; 6. Note that normalizing U(6) by 6; gives:

%9) _ ,;Z_’;ka) + xi(6).

We can then equivalently think of type-6 agents as maximizing their scaled utilities U(8)/6;.
Recall also that by the definition of the >;-order, all the ratios 9;{ /91’ are higher for ¢’ than for 6.
This implies that type 6 can always guarantee a higher scaled indirect utility than type 6:

3o (@) x(@)2 X % 50 + 50« L.

ki Vi ki Vi 0i

uee) _
0

Indeed, since 6, /6; > 0;/0; for all k # i, type 6’ could guarantee U(¢’)/6; above U(8)/6; by simply
reporting 6 and taking this type’s allocation.

As it turns out, convexity of U(6) and (R) are also sufficient for implementability. Consequently,
(R) precisely pins down the gap between the sets of mechanisms that are implementable on I
with and without transfers.



5 Competitive equilibrium with equal incomes

As shown in Example 1, the optimal mechanism sometimes corresponds to a competitive equi-
librium with equal incomes, defined below:

Definition 2. A competitive equilibrium with equal incomes (CEEI) is a vector of prices p =
(p1,p2,---,pN) € Ry and allocations x : T — RY such that the supply constraints (S") bind for all goods
and all types choose utility-maximizing allocations subject to their unit budget constraint:

forall0eT, x(0)ecargmax{0-z: z-p<1}.

zeRY

Intuitively, a CEEI allocation can arise from the following procedure: give every agent one unit
of artificial currency, post per-unit market-clearing prices p, and let everyone buy their favorite
bundle z. The resulting aggregate demand for each good will then equal the available supply
of it, making the allocation feasible.

In my setting, the CEEI allocation will always take a very simple form:

Fact 1. A CEEI always exists; the vector of CEEI prices p is unique and strictly positive. The CEEI
allocation is unique up to a zero-measure set of agents. Moreover, almost all types 0 spend their entire
budget on only one kind of good:

x(0) =e; % :=e; q; forsomei.
We will refer to q; as the affordable quantity of good i.

This simple structure is a consequence of the linearity of utilities and the lack of a constraint on
the total allocation Y’ x;(6).* In what follows, I refer to the following as the CEEI mechanism:

xceer(0) := {ei q; < 0;q;= m]%iX(’j%'}r

Note that the same allocation rule can also be implemented by offering agents a menu of N
pure options like those in Example 1:

{g10f good 1}, {g20fgood2}, ..., {qnofgood N}.

Let us now describe the set of agents buying each kind of good or, equivalently, picking option

4Such a constraint would be present if agents had unit demand and x;(8) represented the probability of getting
good i. In those cases, the CEEI allocation could be mixed, which would greatly complicate its structure; see
Hylland and Zeckhauser (1979) for a discussion.
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i from the above menu. Denote by 6° € I'° the type who is indifferent among all N options:

g0 = ( 1/171 1/172 1/&)
zllc\il 1/qx ZIIL 1/qx lec\il 1/qk

Then, up to breaking indifferences on a null set, the set of agents getting only good i is:
Ti={0: 0> 6.
The indirect utility of the CEEI mechanism is then given by:

Ucggi(0) = m]aX 0j q;=0; q; if 0 €T,

€1

i I3

e €3

Figure 4: Each region I'; contains types who get the affordable
quantity g; of good i under the CEEI mechanism.

6 When is CEEI optimal?

I now present conditions under which the CEEI mechanism is welfare-maximizing. I impose
the following integrability condition on the renormalized density g:

Assumption 1. The renormalized density satisfies ¢ € H'(T'), that is, g is square—integrable on T and
has a first derivative along T (in the weak sense) that is also square—integrable.

To formulate these conditions, however, we must first construct a vector of shadow costs ¢ € RY,
which will play the role of multipliers on the supply constraints (S).

6.1 Shadow costs of supply

First, define:

M; = fr ()0, A= /r g(0)A(0) do,
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Intuitively, M; is the mass of agents choosing option i and A; is the designer’s total value of
giving each of them a unit of good i. Now, for i # j, define:

Tij = frmrjg(f?) 6; do (6) / \/ g7+ 07 - 5= q))%

where do denotes (N -2)-dimensional Hausdorff measure on I'; n T';. Intuitively, T;; represents
the density of agents who would switch from choosing the affordable quantity g; to g; if the
latter got increased marginally. Note that for all i and j # i we have M;, A;, Tj; > 0.> We can now
construct the shadow cost vector:

Definition 3. The vector of shadow costs c = (c1,¢,...,cN) is given by:

Ay
c=J A, where A:=] : |,
AN

and | e RN*N has entries

Jii = Mi+q; ), Ty, Jij=-q; Ty (i#]).

j#
Fact 2. Shadow costs c exist and are strictly positive: ¢ > 0.

Why are these the correct values for the shadow costs? To answer this question, consider an
exercise where the designer can allocate any amount of the N goods, but has to pay per-unit
costs ¢ = (cy,...,cN) for them. Consider then the CEEI mechanism for our original problem
with its corresponding affordable quantities given by q = (41, ...,4n) and ask: what would the
cost vector have to be so that the designer could not benefit from marginally perturbing these
affordable quantities?

Fix any good i and consider the marginal effect of perturbing the offered g; upwards by ¢,
while keeping the other affordable quantities unchanged. To first order, this perturbation has
two effects illustrated in Figure 5. First, agents in I'; who chose g; before continue to do so, but
now receive a higher quantity. This improves their utility, but also incurs a cost of ¢; € per agent.
Second, the perturbation encourages some agents who previously chose g;, j # i, to switch to
q;- For every such agent, the designer incurs a cost of ¢; q;, but saves ¢; g; as she no longer has
to provide her previous option. However, the welfare effects of such “switchers” are not first-
order: this is because both their mass and change in their welfare are of the order of €. Now, as
€ becomes small, the (per-unit) sum of these two effects converges to:

Ai - CiMi + Z Tz] (C]q] - Ciqi)-

j#i

5For A; and M,;, this follows as A, g >0and each I'; has positive measure. For Tjj, this is because the surface has

a positive (N —2)-dimensional Hausdorff measure and because 6; > 0 on its interior.
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Thus, the system Jc = A defining the shadow costs captures precisely the first-order conditions
ensuring such perturbations are not beneficial.

€;

(3]' €y
Figure 5: First-order effects of increasing the affordable quan-

tity gx. Agents in the violet region receive higher quantities of
k; agents in the green region switch from other goods to k.

6.2 Sufficient conditions for optimality

To state the main result of this section, I define the following signed measures on I'; for each i:
1i(A) = fAﬁri Oi[)\g+ div((c - (%:cj) G)g) - (%:cj)g] do - fAmar; 0; (c - (%:Cj) 0)g-vdo, (4)

where oI'f := dI'ndl'; and v() is the outward unit conormal to oI'f in I';. The divergence is
taken within the hyperplane containing I'. Also, let 17 and y; denote the positive and negative
parts of y;. Then p; is balanced, i.e. u; (T;) = p; (I;).

Fact 3. Forall i, u;(T';) =0.

We then get the following result:

Theorem 2. The CEEI mechanism is optimal if p: >;-stochastically dominates p; for every i.

I now explain the role of the signed measure y;. Broadly speaking, it lets us rewrite the de-
signer’s objective as a function of indirect utilities. Indeed, for every feasible U, we have:

[ @ u@ace) - > JA | UG(Q) dui(0) + const. (5)

In this sense, the measure is similar to a virtual value in a single-dimensional, quasilinear
screening problem. The difference, of course, is that while the virtual value multiplies the

13



allocation, my measure y; multiplies the (transformed) indirect utility.® Indeed, writing the ob-
jective as an integral over (weighted) indirect utilities, rather than weighted allocations, is an
established practice in the multidimensional screening literature.”

This lets us interpret the positive and negative parts of ;. Intuitively, p places weight on
types whose utility the designer would like to raise, after accounting for how this change affects
the objective as it propagates through the local IC constraints. Conversely, the support of
consists of types whose utilities the designer would want to decrease. Again, this intuition
is similar to that for the role of virtual values. There, they summarize the marginal effect of
increasing a type’s allocation on the objective once the induced local incentive effects are taken
into account.

The designer cannot, however, adjust U freely: Theorem 1 tells us that implementable indirect
utilities must satisfy certain shape restrictions. In particular, ratio monotonicity (R) bounds
how rapidly U(#) may increase as § moves towards the vertices of I'. Indeed, the CEEI indirect
utility Ucgg; is exactly the “extremal” one that makes these constraints bind on each region I’;.
The dominance condition in Theorem 2 then formalizes when this extremal profile is optimal.
Intuitively, CEEI is optimal if, for each i, the positive part y. lies closer to the vertex e; than
the negative part y;. When this holds, the best the designer can do is to make U(0) increase
as rapidly as possible as one moves toward each vertex. This is precisely what the CEEI utility
does. The sense in which one measure is closer to ¢; than the other is captured by the notion of
>;-stochastic dominance. While it can be defined in multiple equivalent ways (which are useful
in proofs and discussed in Subsection A.1 in the appendix), one definition is as follows:

Definition 4. Let p, T be measures on some Q) ¢ RN with p(Q) = T(Q)) and let > be a partial order on
Q) such that the set {(x,y) e Qx Q: x > y} is closed in Q x Q). Then T >-stochastically dominates
p if and only if there exists a >-monotone transport plan from p to T, that is, a probability measure 7t
on Q) x ) such that

t(AxQ)=p(A), (QAx A)=1(A) forall Borel AcQ),

and 7t is supported on {(x,y) : x < y}.

Therefore, the theorem says that the CEEI mechanism is optimal if, for each i, one can transport
the negative part onto the positive one by shifting mass only in the direction of the vertex e;.

®One could also integrate the objective by parts to obtain a representation involving the allocation rule x(8).
However, because x is a vector field, such a representation is not unique: it depends on a choice of vector-valued
“flows” which, intuitively, correspond to sets of paths in the type space I' along which one integrates by parts.
Then, when optimizing over x to maximize such an expression, one implicitly accounts only for the effects of
perturbing x that propagate through local IC constraints along these paths. In general, this can lose important
information about effects propagating through other local IC constraints.

Representing the designer’s objective in terms of U(0) avoids this issue: since U is a scalar potential, the objec-
tive can be rewritten in terms of U(6) without having to select paths along which indirect utility is integrated. As
a result, this representation encodes information about effects propagating through all local IC constraints.

7See, for instance, Armstrong (1996); Rochet and Choné (1998); Manelli and Vincent (2006); Daskalakis et al.
(2013, 2017).
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Importantly, this condition depends only on the relative placement of " and p; in I';, not on their
total masses; the particular choice of shadow costs ¢ ensures that y; is always balanced.

€1

H1

6 &

(o) €3

Figure 6: An example where each ] >;-stochastically dominates y; . The
supports of the negative parts are marked by darker colors; the supports
of positive parts are marked by lighter ones.

Remark 3. The condition in Theorem 2 resembles the stochastic-dominance certificates developed in
Daskalakis et al. (2013, 2017) for the problem of a multi-good monopolist. In particular, Daskalakis
et al. (2013) provide a dominance condition for the optimality of grand bundling that is phrased in terms
of a signed measure similar to mine. Our approaches are closely related: I rewrite the objective as an
integral against a signed measure and certify optimality of an “extremal” indirect-utility profile through
a stochastic-dominance comparison. However, several features of my environment require a different
construction. First, my types live on a simplex and the planner maximizes weighted welfare rather than
revenue. Second, feasibility is governed by aggregate supply constraints rather than per-agent quantity
caps, so the relevant signed measures must incorporate the shadow costs of supply, and they are naturally
defined separately on each region I'; induced by the CEEI menu. Most importantly, the constraints that
make the candidate solution extremal are different. In Daskalakis et al. (2013), extremality is driven by
unit caps on allocations. Here, it is due to the ratio monotonicity condition (R) which bounds how fast
U(6) can grow as 6 approaches a vertex. This is why the objective representation in (5) involves the
transformed term U(60)/0;, rather than U(0) alone.

When are the stochastic dominance conditions in Theorem 2 satisfied? To provide intuition for
this, I give a simple sufficient condition in the special case of symmetric supplies and exchange-
able value distributions. In this benchmark, the condition can be stated directly in terms of the
joint distribution of the unnormalized values V = (V3,...,Vy). To phrase it, I first introduce a
notion of stochastic monotonicity.

Definition 5. Let X be an X-valued random variable and Y be a real-valued random variable. Let > be
a partial order on X. Fix an event E with IP(E) > 0. Forany t with P(Y >t, E) >0,let L(X |Y >t, E)
denote the conditional law of X given {Y >t} nE.
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Then X is =-stochastically decreasing in Y conditional on E if for all such t,t’ for which t > t':
L(X|Y>t,E) >-stochastically dominates L(X|Y >t, E).

Corollary 1. Assume sy = --- = sy and let the unnormalized density f be exchangeable. Then the CEEI
mechanism is optimal if the random vector

noooW

v

is >-stochastically decreasing in V; conditional on V; > V; for all j # i.

In particular, suppose V1, Va,. .., Vy are distributed i.i.d. according to Fy; with support on [0,7] and
Lipschitz density fy1. Suppose also that

fm(x)
Fp(x)

Then the above >;-stochastic monotonicity condition holds.

X

is non-increasing on [0,7]. (6)

The stochastic monotonicity requirement in Corollary 1 is stronger than necessary but provides
a clean condition. Intuitively, it says that CEEI is optimal if agents with higher values for their
tavorite good tend to be more picky: conditional on i being the favorite good, higher realizations
of V; are associated with smaller ratios (V;/V;);.; in the sense of <-stochastic dominance. This
echoes the intuition from Example 2. There, distorting the CEEI menu by introducing mix-
tures was beneficial precisely because less picky agents had higher cardinal values. Under the
condition in Corollary 1 the opposite is true, and such distortions are counterproductive.

The results of this section may raise the question: why is a mechanism as specific as CEEI
exactly optimal in a rich class of cases? Indeed, the CEEI mechanism might at first seem knife-
edge. After all, the designer possesses many seemingly powerful tools: she could, for instance,
try to screen agents by distorting the competitive price vector, or by offering a menu of per-
sonalized budgets and price schedules. Still, for a non-trivial class of primitives, none of these
distortions are helpful: the optimal mechanism still gives everyone the same budget and lets
agents spend it at competitive prices.

To understand why this is the case, note that the CEEI allocation is in fact the only allocation
that is both Pareto-efficient and satisfies IC constraints. Indeed, the Second Welfare Theorem
tells us that any Pareto-efficient allocation can be implemented by assigning agents individu-
alized budgets and letting them purchase the available goods at competitive prices. However,
such an implementation generally requires individualized transfers which are not feasible in
a mechanism design setting where types are private information. As a result, no competitive
equilibrium with unequal budgets is implementable, and thus no other Pareto-efficient alloca-
tion is either.
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It therefore remains to ask: when can departing from Pareto efficiency, and so from CEEI, bene-
tit the designer? The intuition presented above for Corollary 1 provides a partial answer to this
question: distortions away from CEEI produce mixed allocations, which are preferred by agents
whose relative values for the mixed items are closer together.® Thus, any distortion away from
CEEI—and hence Pareto efficiency—will necessarily reward agents who are less picky, at least
among the subset of goods that is being mixed. This in turn lets us explain why CEEI is optimal
for one special class of distributions: ones where being less picky is always a sign of lower car-
dinal values. In such cases, all such distortions will redistribute rents to less-worthy recipients,
and thus the designer will do better by simply sticking to the Pareto-efficient outcome.

U

picky U

picky
Pareto
frontier

Pareto
frontier

CEEI
allocation

CEEI
allocation

Feasible Feasible

region region
Uflexible Upexible
Figure 7a: The designer’s Pareto weights skew to- Figure 7b: The designer’s Pareto weights skew to-
wards picky agents. wards flexible agents

Figure 7: A heuristic illustration showing that distorting away from the only im-
plementable Pareto-efficient allocation can reward flexible agents, but never picky
ones. Suppose the designer puts Pareto weights on two kinds of agents: flexible
and picky. Then if the designer’s Pareto weights are tilted towards picky agents,
she always prefers the Pareto-efficient CEEI allocation. If they are tilted towards
flexible ones, she might want to distort the CEEL

Still, the designer might not only want to target agents based on the strength of their relative
preferences, but also based on which specific goods they like. Nevertheless, as discussed above,
any potentially beneficial distortion will still inevitably involve mixing and thus the intuition
discussed here will remain relevant. Consequently, if the association between the strength of
relative preference and cardinal values is strong, CEEI is likely to remain optimal even when
strong preferences for some goods correlate with high cardinal values.

8The only other possible distortion includes discarding some of the supply. This can never be optimal, however,
as the designer could then do better by simply allocating this supply evenly across all agents.
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6.3 Proof of Theorem 2

I now present the key steps in the proof of the theorem; the facts and lemmas invoked here are
shown in the appendix.

6.3.1 Bounding program. We begin by finding a different program whose value puts an upper
bound on Problem 1 faced by the designer:

Problem 2. Choose U : T — R, to maximize:

'[FU[AgnLdiV[(c—(Zc]-)G)g]—(ch) g]d@—/;rgU(c—(ch)ﬂ)«vda+s~c, (7)

subject to:
L") _u)

forall 6,0"eT; such that 6" >; 6, o <y
i i

: (8)
Lemma 2. The value of Problem 2 is weakly higher than that of Problem 1.

I show that Ucggr—the indirect utility function of the CEEI mechanism—solves this bounding
program. Since the CEEI mechanism is also feasible in the designer’s original problem, this will
imply its optimality in both problems.

Let us comment on the choice of this bounding program. First, as noted in the discussion
following the theorem, the objective is written in terms of the indirect utility function; this
is accomplished using a version of the divergence theorem on the hyperplane containing the
simplex I'. Second, Problem 2 relaxes certain constraints required for implementability. Indeed,
it imposes ratio monotonicity (R) in direction i only on the region I';, that is for types receiving
good i under the CEEI allocation. It also drops the requirement that indirect utility functions
be convex (although this property is invoked earlier, as it allows us to write the objective in
the form (7)). Finally, the problem incorporates the supply constraints (S") into the objective
through the use of shadow costs constructed in Subsection 6.1.

6.3.2 Measure formulation. We subsequently rewrite Problem 2 in a different form (and drop
the constant s - c from the objective):

Problem 3. Choose Y : T — R, to maximize:
; fri Y () dui(6), 9)
where the measure y; is defined as:
1i(A) = fAmFi Gi[/\g + div((c -3¢ 0) g) -(>>¢h) g] do - fAmar; 0;g(c—(3.cj)0)-vdo. (10)

18



subject to:
V0,0 €T; suchthat 6’ >; 6, Y(0") <Y(0). (11)

The problem is written in terms of transformed variables:

ue)

Y(0) := )

forfel;.

This lets us express implementability constraint (11) in a simpler form. It also rephrases the
objective in terms of integrals of Y(0) with respect to a measure capturing the benefits of in-
creasing or decreasing this transformed variable for particular types.

Note Ycggr, which corresponds to the CEEI mechanism, is feasible in (3) as it is given by:
Yceri(0) =q; if0 el

In fact, this choice of Y makes constraints (11) bind on each region I’;.

6.3.3 Monotone transport. It remains to show that the >;-stochastic dominance condition of
the theorem guarantees that Ycgg; solves Problem 3. Fix any i and recall that the >;-stochastic
dominance condition implies the existence of a >;-monotone transport plan 7t; from p; to p.
Thus, for every Y satisfying (8), we have:

fr Yy - fr 2 (YO -Y(0) dm(0,0)

Since 7t has support only on pairs (6, 6’) satisfying 0 >; 6, the constraint (8) implies that:

fr‘deti <0,

for all admissible Y. Since Ycggy = g; attains this upper bound of 0, it is optimal.

7 The symmetric two-good case

So far I have focused on understanding when and why the CEEI mechanism is optimal. In
this section, I provide a full characterization of the optimal mechanism in the limited case with
two goods with symmetric supplies and exchangeable value distributions. The assumption of
symmetry is not crucial: while the general two-good case can be handled with a similar ap-
proach, the simplifications coming from symmetry make the underlying intuitions clearer. The
restriction to two goods is, however, important for overcoming the general intractability of the
multidimensional screening problem. As I explain below, with two goods, the reparametriza-
tion from Section 4 effectively makes types one-dimensional.
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While the reparametrization of types is useful analytically, the main result of this section is
phrased in the language of unnormalized values:

Theorem 3. Let the distribution over renormalized types G have a density g. Define:
{(z) = z-(2z-1)P[Va-z(V1 + V2) 0],
and let:

z* € argmax —— (zlE[V1+V2] + 2]E[(V2—Z(V1+V2)) ]) (12)
ze[1/2,1] g( ) "

If there exists z* = %, then the optimal mechanism offers a menu of two options:
{2s of good 1}, {25 of good 2} . (13)

Otherwise, the two-option mechanism is not optimal. Then z* € (1/2,1) and the optimal mechanism
offers three options:

{C( )ofgoodl} {@( )ofgoodZ} {g(s )z ofgoodlandg( )z ofgoodZ} (14)

Thus, the optimal mechanism can take one of two forms. In the first form, it offers equal quan-
tities of the two goods and lets agents choose their favorite; this is a special case of the CEEI
mechanism discussed in the previous section. In the latter form, the mechanism has the struc-
ture discussed in Example 2: it offers two small, “pure” options and a larger equal mixture of
the two goods.

While the proof is in the appendix, I explain its core logic as well as the reason for the simple
structure of the optimal mechanism. In the first step of the proof, I show that the symmetry
of the setting lets us restrict attention to symmetric mechanisms, that is, ones where permut-
ing an agent’s value profile permutes her allocation of goods in the same way. Moreover, the
symmetry of the allocation tells us that all agents will get weakly more of their preferred good
than of the other one. Indeed, suppose some type 6 with 6; > 0; received x;() < x;(6). Such
an agent could then profitably deviate to the “mirrored” version of her type whose allocations
of the two goods are flipped. This observation greatly simplifies the analysis, as it guarantees
that we need only be concerned with IC constraints between types preferring the same goods.
To see this, consider some type 6 = (1-t¢,t) with t < 1/2. Suppose such a type considered re-
porting (1-#,t") with t' > 1/2 (see Figure 8). By the above, after such a deviation, she would be
receiving more of good 2 than she would of good 1, which is her preferred. At the same time,
the “reflection” of type (1-t/,t'), (,1-1t'), has a flipped version of this allocation with more
of good 1 than good 2. Since type (1 -t,t) prefers good 1, she would therefore prefer to imitate
this mirrored type on “her side” of the simplex I'.

Therefore, IC constraints do not bind across sets of types who prefer different goods; we can
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Figure 8: IC; is redundant, as the deviation along IC; is always
more tempting.

thus solve the problem in both such sets separately, with symmetry guaranteeing that the so-
lutions in those sets will be the same, up to the labelling of goods. Let us then relax such
“across-I';” constraints and consider the problem within the set of agents preferring good i to
good j. Fix such a type and note we can rewrite her utility as:

U(Q) = 9,‘ xi(()) + 9] x](())
= 9,‘ (xi(f)) = x](G)) + (9] + 91') x](Q)

- 0; (xi(G) - x(0)) + x;(0).
=Ax(0)

This reparametrization has a linear structure which will let us apply Myersonian methods (My-
erson, 1981). Indeed, we can think of these agents as trading off Ax, i.e. how much more she
gets of her favorite good than her less-favorite good, against allocation of the less-favorite good
xj. By Myerson’s lemma, IC constraints on I'; permit all and only increasing Ax. We can then
implement any such “allocation” of Ax by using x;(0) as a payment rule.

However, even with this observation, there are three differences relative to the standard My-
ersonian problem. First, there are two supply constraints, one for each good. Nevertheless, a
symmetric mechanism will allocate equal amounts of both goods, and so we can without loss
merge the supply constraints into a single supply constraint on x; + x5.

The second difference comes from the positivity constraint on the “payment rule”, x;(0). Note,
however, that IC requires x;(0) to be decreasing in 6;, and thus the positivity constraint will
only bind at the highest type: 0; = 1. I show this requirement can be subsumed into the supply
constraint. Intuitively, we can always make this type’s x; positive by giving everyone a suffi-
ciently large lump-sum allocation of their less-preferred good. The positivity requirement then
boils down to the supply constraint holding even with such a lump-sum allocation.’

Finally, unlike in the Myersonian problem, the allocation rule is not exogenously bounded from
above. This turns out to greatly simplify the solution. While maximizing over increasing allo-

9This step is also complicated by the fact that the “payment” x;(0) also enters the supply constraint.
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cation rules into [0,1] subject to a single linear constraint would sometimes produce ironed
regions, the lack of an upper bound means that bang-bang allocation rules are always opti-
mal. Thus, optimal allocation rules Ax are always step functions. This guarantees the simple
structure of the optimal menu in the theorem.

Let us now discuss conditions under which introducing the mixed option is optimal. To that
end, consider the following corollary:

Corollary 2. The mechanism offering the two options in (13) is optimal if and only if:

Vi
forevery ke[0,1], [E [V(l) -Vioy k ‘ % >k|<E[Vyy] (1-k), (15)

with V(o) = max{V1, V2}, V(1) = min{Vy, Va}. In particular, this is the case if:

Voo _

E [Vl +V ‘ T

r] is non-increasing in r. (16)

To understand the result, consider first the mechanism with the two options in (13) and order
all agents by the ratios of their lowest to highest value: v(1)/v(,). Note that agents for whom
the ratio is closer to 1, i.e. those who have weaker preferences over which good they get, are
more willing to accept mixtures of goods. Now, consider a perturbation to the mechanism un-
der which all agents with v(1)/v(2) > k get some of their less-preferred good alongside their
favorite one, and the allocations of all agents” preferred goods are reduced. To maintain in-
centive compatibility, these changes have to be calibrated to keep the types with v(1)/v(2) = k
indifferent between the pure and mixed options. Also, the reduction in all types’ favorite good
allocation is chosen so that the perturbation does not violate the supply constraint. The differ-
ence between the left- and right-hand sides of (15) then captures the welfare effects of such a
perturbation. If it is welfare-improving for some k, the two-option mechanism clearly cannot
be optimal. Since Theorem 3 lets us restrict attention to mechanism with one symmetric mixed
option, the absence of such a profitable perturbation is also sufficient for optimality.

It is then intuitive that introducing such a mixed option would not be beneficial under condition
(16). Echoing the intuitions from Example 2 and Section 6, offering the mixed option serves to
direct rewards to less picky agents. If such agents tend to have lower cardinal values, doing so is
counterproductive. Importantly, however, the opposite monotonicity of E[V; + V3 | V(1)/V(2) =
r] is not sufficient to conclude that the designer should introduce the mixed option. This is
because mixing goods is an intrinsically distortionary screening device: to direct rents toward
less picky types, the mechanism must give them some of the good they value less, and must
finance this by reducing other agents” allocations of their preferred good to satisfy the supply
constraint. Thus, even if less picky types tend to have higher total values, this correlation must
be strong enough to compensate for the resulting inefficiency.
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8 Discussion

This paper studies how a welfarist designer can target high-need recipients in settings without
transfers. Although incentive constraints prevent the designer from eliciting agents” absolute
values directly, she can sometimes use relative preferences—how strongly an agent favors one
option over another—as a proxy for them. Indeed, when weaker preference margins are pre-
dictive of higher need, the designer can sometimes improve welfare by offering menus that
include bundled or mixed options. These options are disproportionately attractive to “less
picky” agents and thereby provide an incentive-compatible way to direct larger total alloca-
tions toward types that are more likely to have high absolute values. Such distortions are
beneficial when the informational gain from screening on relative preferences outweighs the
allocative inefficiency created by mixing. This logic fails, however, when the correlation runs
in the opposite direction, that is when higher-value agents tend to be more selective. When the
type distribution also satisfies certain stochastic-dominance conditions, the optimal mechanism
implements the competitive equilibrium with equal incomes (CEEI).

These observations speak to market design questions in settings such as public housing allo-
cation. Housing authorities commonly use a variant of choice-based lottery systems, where
applicants may list up to N developments, and units within each development are allocated
by lottery among those who selected them. For example, the Amsterdam housing lottery al-
lows applicants to enter two draws per week.!? Such mechanisms can be mapped into my
model by interpreting developments as different goods and equilibrium winning probabilities
as allocations.!! Indeed, the special case where each applicant is allowed to enter one lottery
corresponds to the CEEI mechanism: in equilibrium, the resulting winning probability for each
good equals the affordable quantity ¢; in the CEEI menu. While previous work on public hous-
ing design has considered the trade-offs between allowing for choice and targeting (Arnosti
and Shi, 2020; Waldinger, 2021), it has focused on extreme mechanisms giving agents no choice,
or letting them choose a specific development. My results suggest that moving beyond these
extremes can be welfare-improving: the designer may benefit from offering both limited and
full-choice options within the same mechanism, leveraging self-selection to improve targeting
while preserving choice for applicants who value it most.
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A Omitted proofs

A.1 Strassen’s theorem

Definition 6. Let > be a partial order on ). A set C ¢ Q) is an >-upper set if 0 € C, 0 = 0" implies
0" € C. A function i1 : Q) - R is >-increasing if 0 < 0" implies n(60) > 1(6’).

The following is a special case of Strassen’s theorem stated in Fritz (2018):

Theorem 4 (Strassen (1965); Kellerer (1984); Edwards (1978)). Let p, T be measures on some Q) ¢ RN
with p(Q) = T(Q) and let > be a partial order on Q such that the set {(x,y) e Qx Q: x >y} is closed
in Q3 x Q). Then T >-stochastically dominates p if and only if any of the following conditions holds:

1. p(C) < t(C) for every closed >-upper set C < ().

2. For every bounded, lower semicontinuous, >-increasing 17 : Q2 - R,

fgndp < fﬂndr.

3. There exists a =-monotone transport plan from p to T.

A.2 Differential geometry facts

Let H denote the (N - 1)-dimensional hyperplane containing the simplex I':
H:={0eRN: > 0,=1}.

Note that for every 6 € H, the tangent space to H at any 0 is:
TH:={veRN:Y v;=0}.

Let us also define the intrinsic gradient for this surface:

Definition 7. Let 17 : H — R and fix 6 € H. The intrinsic gradient vV 1(6) € TH is the unique vector
such that:
Dyn(0) =vyy(0)-v  forallve TH.

I now introduce a version of the divergence theorem on the surface H. This result is a direct
application of Green’s formula in RN~ (see e.g. Rodrigues (1987)).

Theorem 5. Let () c H be a bounded, open set such that 0Q) is Lipschitz. Let 1 : Q — R be Lipschitz.
Fix a tangent vector field X : Q) - RN, X(0) € TH, such that X € H'(Q; TH). Then:

[ vn(©)-X(0)dviu(0)+ [ 0(6) divX(0)dVi(6) = [ 5(0)X(0)-v(0)dSsa(0),  (17)
where dVyy denotes the (N — 1)-dimensional surface measure on H, dSyc, denotes the (N —2)—dimensional

surface measure on 0Q), and v is the outward unit conormal along Q). Finally, div X(0) is the diver-
gence taken in the (N —1)-dimensional subsurface H.
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A.3 Properties of feasible indirect utility functions U

Let us first find the intrinsic gradient of U in H:
Fact4. vgU=x-1 %(in).

Proof. The envelope theorem tells us that for every 6 € I'° and direction v € TH in which U is
differentiable, we have:
D,U(0) =v-x(0).

We can use it to verify that for all such v we have:

U-VHU=U~(x—1%](in)):v-x—(Zvi) £ x;= DyU.

Moreover, x -1 I%,(in) € TH as Zi(xi—%kak) =0. =

The following fact will let us apply Theorem 5 to indirect utility functions:

Lemma 3. Every feasible indirect utility U is Lipschitz.

Proof. Fix any feasible U and let x be the allocation rule that implements it. Recall that U is
convex and so to show it is Lipschitz it suffices to prove that its gradient is uniformly bounded,
wherever it exists. By Fact 4, we have:

VHU=x—1 %](sz)
Since x > 0, it suffices to show that x;() it is uniformly bounded across i and 6. I prove that in

what follows. Fix i. Let
7 = [ 0)do.
! {eT: aiz%}g( )

Recall g has full support on I', so we have Z; > 0. Now, for k > 0, define

m(k) = L@ef: > xj>k} g(@) 49

Since x is feasible, it satisfies the supply constraint (S'):

[Zx0)50)d0 < 35,

so m(k) < %Zsj, implying m (k) — 0 as k — co. We can therefore pick k such that m(k) < Z;/2.
Then the set

S::{QGF: 91'2%, ZXJ(Q)SIE}

has mass at least Z; - m(k) > Z;/2 > 0. Moreover, we can bound the utility of the agents with
0 € S as follows: )
ue) =6-x(0) < xj(6) <k
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Notice that if there were some type 6’ with x;(8") > 2k, then every 6 € S would profitably deviate:
0-x(0") > 0;x;(0") > 5 -2k =k > U(0),
contradicting (IC’). Hence x;(#) < 2k for all 6. Since i was arbitrary and N is finite, the overall

supremum is finite. O

A.4 Proof of Lemma 1

Consider any feasible allocation rule y : VV - RY in the original problem and construct x : T’ -
RN as in (2). Fix 6 € T and choose t,#' > 0 such that t§ € V and #'8 € V. Such t,#' exist since
[0,€]N \ 0 c V. Then, by (IC), we have:

t0-y(t0) > t6-y(t'0), t'0-y(H'0) > t'0-y(t9),

which implies:
0-y(t0) =60-y(t'9).
We can therefore define U : T - R, such that for every 0:

U(0) = 0-y(t0) for any t > 0 such that t0 € V.

Moreover, note that:
@ -y(V)=U(®) almost surely. (18)

I now show x satisfies (IC’). Fix 8,6 € I and choose any t > 0 with t6 € V. For any v’ € V, (IC)
applied to v = t0 gives

t0-y(t0) > t0-y(v') = UH) > 0-y(v').

In particular, this holds for all ¢’ such that v'/(};v!) = #’. Taking the conditional expectation
over V given O = 0’ yields

) > 0-E[y(V)|©=0"]=60-x(¢"). (19)
Also, by definition of x and (18),
0-x(0)=0-E[y(V)|©@=0]=E[0@-y(V)|©=0]=E[U(O) |©=06]=U(®0). (20)

Combining (19) and (20) gives:
0-x(0) >6-x(6").

Let us now show that x satisfies (S’). By the tower property:
Jx(©)dc®) = E[Ely(V) |0]] = Ely(V)] = [ y(o)dF(v) <5,
where the last inequality follows from (S).
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Finally, let us show (3). Using V = (3 V;) ® and (18), we get:

E[V-y(V)]
E[E[YV;|©] U(0)]

fr A(0) T(0)dG(6) = /r A(8)6-x(0) dG(6),

JERIOLEO

where the last equality follows from (20).

Now, fix x that is feasible in Problem 1 and let y(v) := x(v/ ¥; v;). I show y satisfies (IC). Fix any
v,v" € V; then there exist 0,0 € I such that 0 = v/(¥ v;) and 0’ = v'/(¥ v!). (IC’) then implies that:

0-x(0) > 0-x(0) = (D v)0-x(0) > (D v)0-x(6") = v-y(v) > v y).
It also satisfies (S) because:
fv y(v)dF(v) = E[y(V)] = E[x(®)] = fr x(0)dG(0) <5,

where the last inequality follows from (S’). Note (3) follows because:

[ o v@ @ =E[vy)]=E[E[D V0] ©:2(@)] = [A©)(0-3(0))dG(0).

A.5 Proof of Theorem 1

Necessity has been shown in the main body. Let us then show sufficiency. Assume U is convex
and satisfies (R). I construct an allocation rule x : I' - RN that implements U. At every 6 where
ViU (0) exists (which is the case a.e. by convexity), define x(6) as follows:

x(0) = vyl(0) + (U(0) -0-vHU(0))1.
At points where VU does not exist, choose any p(6) € dyU(0) and let
x(6) = p(0) + (U(0) -6 p(6))1.
We then get:
U@)=60-x(0) and  x(0)-13 Y xj(6) cogl(h). (21)
Incentive compatibility. Fix 6,6’ € I'. Then (IC’) requires that for all 6,6’ we have:
ue) >x(0")-6
=U(e)+x(0")-(6-6")
= U0 +(x(0) -1 F(Xx:(07))- (0-0),
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where the last line follows because 1 %(Z x;(0"))-(0-06") = 0 since 6,0’ € H. This, however,
holds by convexity of U(6) and the fact that x(6") -1 %(Z x;(6")) belongs to its subgradient.

Nonnegativity of x. Fix any 6 € I' such that VU () exists (by convexity of U, this is the case
a.e.) and fix a coordinate k. We will show x;(0) > 0. Fix any i # k; since the gradient exists only
in the interior of I', we know that 6; > 0.

Now, for 0 < € < 1, define
0°:=0+e(ep—0)=(1-€)0+eerel.

Since i # k, we have 65 = (1-¢€)0; > 0. Moreover, 6 >; 0¢ because for any [ # i,

1-€)0 9
€~ ) (1-e)0 o 0
b —( (12)@?6 =5 t@os >0 L=k

Since 0 >; 0¢, (R) then implies that for all € € [0,1]:

us) | Ue)
o ° 6

A limiting argument therefore gives:

U(Q)) 6i De,-oU(0) ~ U(6) Doy o6i

Do i 2 (22)

Note that:
D, ¢6; = (ex)i —0; = -0,

and, sincee, -0 € TH,

Dy, oU(®) = TlI(8)- (e ~0) = (x(6) =1 . 11(6) ) (ex - 6) = x¢(6) - 8- x(8) = (6) - U(6).

Substituting into (22) gives:

G U

Since the gradient existed at 0, it must have been in the interior of I', and thus 6; > 0. Conse-
quently, x(0) > 0 where the gradient VrlU exists, which is the case a.e.; the positivity of x(6)
elsewhere is guaranteed by taking limits from nearby differentiability points.

A.6 Proof of Fact1

Existence and uniqueness of the CEEI price vector p follows from the fact that linear utilities
satisfy the gross substitutes condition (Kelso Jr and Crawford, 1982; Gul and Stacchetti, 1999).
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I now show that p > 0. If p; = 0 for some good i, then any type with 0; > 0 (of whom there is a
unit measure) would demand infinite amounts of good i, contradicting market clearing.

Now, recall each type 0 solves
ma})x{ﬂ-z: p-z<1}. (23)
z2

For almost all types 6 there exists i(0) such that:

0.0y O
2O ST forall j £ i(6).
Piee) Pj

For such types, the unique solution to (23) is a corner solution involving spending the entire

budget for the highest “bang-per-buck” good i(0).

A.7 Proof of Fact 2

First, to show they exist we must show that | is indeed invertible. For this purpose, define
k; = ciq;, so c; = ki/q;. We can write | c = A as:

Hk=A,
where
Hi=M ST, Hy=-Ty<0 (i+))
qi j#i
Moreover, for each row i,
Hii = > |Hij| = % >0,

j#i 1
so H is a strictly diagonally dominant Z-matrix. Hence H is nonsingular and is a nonsingular
M-matrix, so
H1>0 entrywise.

Moreover, A > 0 and therefore c = H"1A > 0. In fact ¢ > 0: since H! > 0 and H! is invertible,
each row of H™! contains at least one strictly positive entry, and because A > 0 we get k; > 0 for
all i. Finally, g; > 0 yields
ki
ci=—>0.
i

A.8 Proof of Fact 3

Note (c-(X¢j)0)g(0) e TH as (c- (X ¢;) ) -1 =0. Thus, we can apply Theorem 5 with Q) =7,
17(8) =0; and X(0) = (c - (X ¢j) 0) g(0) to get:

friei div[(c-(Xc)0)g] d9+/ri Vit (c— (X c;)0) gd6 = faFiQi(c—(ch)G)g-vdU.
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Substitute this into the definition of y;(I’;) to obtain:
ui(ly) = Ai - [Fi Vibi-(c-(3]¢;)0) gdo - (> ¢)) [Fi 0; g do
+ /ari 0i (c— (> cj)p) g vdo—- far; 0i (c— (> ¢j)p) g-vdo. (24)
Note that Vy0; = ¢; - %1, and hence:

- ﬁi VHGZ' . (C — (Z c])G)gdG = - ﬁi(ci - (Z c])GZ)ng = _CiMi + (Z C]) ﬁi ngde
Substituting into (24) and simplifying gives:
1i(T) = Aj— ;M + _/ar- 0i (c- (> cj)8) g vdo- /arf 0i (c— (> cj)p) g - vdo.
We can further combine the boundary terms to get:

ui(T'i) = Aj - ciM; + f

ar;\ar'F 0 (c- (3 Cj)9) g -vdo.

Note that, up to lower-dimensional edges, we have oT; N o' = Uj.; ['; n T}, giving:

‘I/l,'(r,') = Ai - CiMi + Z /I:-OI’k 91' (C - (Z C])Q)gl/l(kl) dO', (25)

k+i

where 1/1.(]:) is the outward unit conormal from I'; into I'; along I'; nT'x. Now, fix k # i and note

I'; nTy is the level set of g;0; — g0k, with q;0; — qx0x =0 on I'; n Ty, and:

(i) _VH(qi0i—qk0)
Va9 - k)|

Thus, the integrand in the last term of (25) becomes:

0 (e~ (o) vy = ~(c~ (X c)8)- V(a6 - 9460) g WH(%"%

- qx0) |
0;
qi0; — qx0k) |
0;
8 0. _
IVE(qi0i — qx6%) |

=~(c= (X c))0) - (gilei - y1) - qilex - §1)) 8 v

- _ [qi(ci — (Z C])Gl) - qk(ck - (ZC])Qk)]

= (qxck — qici) d
qkCk —4qi€i) § HVH(ini—kok)H’
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where the last line follows because on I'; n Ty we have ¢;0; = giby, so the (¥ ¢;j)-terms cancel.
Since gicy — gic; is constant along I'; n Tk, substituting into (25) gives:

9.
(Ty) = A;j—ciM; + Ck — GiCi l do. 26
ui(Ty) = Aj - ciM; gi(qkk qi l)_/rimrkgHVH(E]iGi—Qka)“ 2
Moreover:
. 1 2 2 2 (Qz_qk)z
V(90— ak0) = qilei -y 1) —qr(er - x 1) = | V(g6 —qxb)|" = (a7 +a7) - ’

N

and therefore:
ui(T;) = Aj—ciM; + > (qrex - gici) Tix-

ki

Finally, the ith row of the system Jc = A gives exactly:

Ai—ciMi+ > (qrck — qici) Ty = 0,

ki

so 1;(I';) = 0 by the construction of the cost vector c.

A.9 Proof of Lemma 2

Recall that c > 0 by Fact 2 and so, for any allocation rule x satisfying the supply constraint (S5'):
. (frx(())g((?)dé—s) <0.
Therefore:

/r)\llgd9§frAUng—c-([rxgdG—s):c-s + frAUgdG—/roxgdG. (27)

Let us now rewrite the term involving x. Recall that by Fact 4 we have:

VHU=X—1 %(le)
Moreover, note that:

VHU—I(VHU-O—U):X—l%in—l(x-O—%in(l-G)—x-()):x.
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Thus, we have:
frx-cgdG:fr(VHU—l(VHU-G—U))-cgdG
:fr(vHU—(vHu-G) 1)-cgd9+(zcj)fFUgd9
:fr(c—(ch)Q)g-VHUdO + (ch)/;UgdG.

Now, ¢ - (¥ ¢j) 8 € TH because (¢; - (X ¢j)0;)-1 = 0; also, U is Lipschitz by Lemma 3. We can
therefore apply Theorem 5 to the former integral on the RHS above. This gives:

fr(c—(ch)G)g-vHUdG:—/rl,ldiv[(c—(ch)e)g]d9+farU(c—(ch)G)g-vdU.
We therefore get:
frx-cgdG:frU((ch)g—div[(c—(ch)G)g]) d9+/arU(c—(ch)9)g-vdU.

Plugging back into (27) and collecting terms gives:

fFAUng < /FU[)\g+div[(c—(ch)9)g] -(cp) g]d@—[arU(c—(ch)G) g-vdo + c-s.
It therefore suffices to show that the constraints in Problem 2 are relaxed versions of those in

the original one. This is because the supply constraint (S’) is dropped and the constraint (8) is
weaker than (R).

A.10 Proof of Corollary 1
First, note that exchangeability and s; = --- = sy guarantees q; = --- = gy and so:
0V := %1.

Recall also that the random vector (Vi /Vh,..., Vi VN) a.s. coincides with

o . (@i O )
R,(©) = (®1""’®N .
Similarly, we have:
‘/i = A(@)) ®il

and so:
{Vi>V; Vj} ={Vigi > Vig; Vj} = {©iq; > ©jq; Vj} = {© T}

with the last inequality holding up to a measure-zero set. Thus, the hypothesis of the corollary
says that R; is >-stochastically decreasing in A(®) ®; conditional on ® € I';.

We now prove the fact which uses the hypothesis about stochastic monotonicity. Note that in
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the symmetric case all A; are equal, and so we can denote them by A.

Fact 5. For every >;-upper set C c I';,
ch 0; gdf > NA/ngG. (28)

Proof. Because >; is the coordinatewise order on the ratio vector R;(®), an >;-upper set C ¢ I;
can be written as
C={6¢€T;: R;i(0) € B} (29)

for some >-lower set B ¢ RY. Since B is a >-lower set, RN \ B is an >-upper set and thus
stochastic monotonicity and Theorem 4 tell us that for any t > 0:

P[Ri(©) e RY \B|A(©)@; 2 t, ©¢T;| <IP[Ry(©) ¢ RN\ B | \(©)©; 20, @cT}]
:HD[R,-(@)eRﬁ’\B‘@er,-].
Taking complements gives:
P[R;(©®)¢B|A(©)0;>t, Ocl;|>P[R{(®)eB|O@€T}]. (30)
Then, by (29), we can rewrite (30) as:
POeC|AO®)O;>t, OcT;|>P[@cC| ®cT;]. (31)

Now, note that:

E[A(©)©; 1o | © T} :fOOO]I’[/\((B)@il@eczt | ©@eT;]dt

fooo]P[@ecM(@)@izt, @cT,] PA(©)O; >t | ®cT,]dt.
By (31) we then have:

E[AM@)®1j0icy [@cTi|>Pl@cC|OcT;] [T PM©)O;>t[OcT;]dt
P

[0eC|Ocl;|E[AMO)O; |®€T;].

which is equivalent to:
A B; gd@
[reigan > T [ a0 (32)

Under exchangeability, /.. ¢d0 = & and Jr. A6 gdG = A, 50 (32) reduces to (28). O

By Theorem 2, it suffices to show ;" >;-stochastically dominates y;. I do so by showing con-
dition 1. of Theorem 4 holds, i.e. that for every closed >;-upper set C we have u(C) > pu; (C),
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which is equivalent to:
ui(C) > 0.

Now, note that in the exchangeable case, the shadow costs reduce to:
c=NA1, (> cj) = N?A.

Thus, for any Borel set ) c I';,

. _ ) _N2A . : _no0 2 A ) _ 00y .
yl(Q)—[QAGIgdG NA[Q(%[dlv((G 60)g) +g]do+ N A[Qmar+6,g(6 6°).vdo.  (33)

i

I now show that #;(C) > 0 for well-behaved >;-upper sets C. I then extend this logic to other
sets through an approximation argument.

Fact 6. Let C be an >;-upper set with a Lipschitz boundary oC. Then u;(C) > 0.

Proof. Note (0 -6°)g € TH, and so Theorem 5 yields:
[C 0; div((0-6°)g)do + [C (0-6°) g Vi6; df = [BC 6; (0-6°) g-vcdo, (34)
where v is the outward unit conormal to the boundary of C. Since Vy0; = ¢; - %1, we have:

(0-0)- Vo =(0-0°) (ei-g1)=0i-5 > 00" e;+ 5> 09=0;- 4.

Substituting into (34) we get:

div((0 g 0L _ [ 6 (6-0%.
fCQIdIV((Q 9)g)d9+[c 2 6;d6 Nfc gde_face, (0-6°)-vc gdo.

[CG,-[diV((G %) +g] d0= [ 0:(0-0%)g-vede + & [ gde.
Plugging back into (33) and simplifying the boundary integrals gives:
. - . _ A — NZ2A . —69).
1:(C) /C/\Glgde NAfcng N Afawo 0; ¢ (0-6°) - vedo .
By Fact 5, the sum of the first two terms is positive. Thus, it suffices to show that:
(0-60%-vc <0 forae. §eaCnT®,

To that end, I first show that for any 6 e I'; nT° and all ¢ > 0, we have 6 + (6 - 6y) >; 0. Indeed:

9k+t(9k—9}3)<% - 9,9>9k
9i+t(9i—9?) B 91'

which follows by 0 € T'5. Now, fix § € 9CnT°. C is an >;-upper set, so 0 +t(0 - 69) € C for all
small t > 0, meaning 6 — 6° cannot point outward. Thus, (6 - 6°)-vc <0 a.e. ondCnT®. ]
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We now extend this logic to all closed >;-upper sets using the following lemma:

Lemma 4. Fix i. Let C < I'; be a closed >;-upper set. Then there exists a decreasing sequence (K, )1
of closed >;-upper sets such that
Km+1 € Km/ ﬂ Km = C/

m>1

where each Ky, is a finite union of polytopes in H defined by finitely many inequalities 0y < a 8; (k # i).

Proof. Define:

_ 6
QTi- RN, Q0= ()
i/k#i

Note Q; is injective on I';. Moreover,
0'>0 <= Qi(0")<Qi0).
Now, note Q;(T;) ¢ RN-! and is compact. Also, notice C is >;-upper if and only if Q;(C) is a

>-lower set. Moreover, note that Q;(C) is compact.

Fix m > 1. Now define the finite union of lower boxes:
Dy, = U{[O,b+ %1] tbeizN71 0,b] c Qi(C)} where [0,b]={reRN"1: 0<r<b}.

Then D,, is closed, lower, and a finite union of boxes.
Also Q;(C) ¢ Dy,. To see why, fix any r € Q;(C); then, since Q;(C) is a lower set, [0, 7] c Q;(C).
Moreover, there exists some b ¢ %ZN lsuchthatb<r<b+ % Since [0,b] ¢ Q;(C), it follows
thatr e [O,b + %1] c Dy,.
We want to show that Q;(C) = Ny»1 D Since we already know that Q;(C) ¢ D,, for every m,
it suffices to show that N,,»1 Dy € Q;(C). To that end, take any r € N, Dy,. For each m choose
by € 2ZN-1 1 Q;(C) such that:

r<bm+ %1.
Since Q;(C) is compact, there exists a convergent subsequence of {by, } and thus a point b e
Q;(C) such that r < b. Finally, since Q;(C) is a lower set, b € Q;(C) implies that r € Q;(C).

Now, set C,, := Qi‘l(Dm) and define the decreasing sequence
m
K =) Ca-
n=1
Each Kj, is closed and i-upper, and
N Ku = NG = (N D) = QHQC) - C.
m>1 m>1 m>1

Moreover, each Cy, is a finite union of sets {6 € I'; : 0;/0; <b, Yk +i} ={0eT;: 0 < b, 0; Yk + i},
i.e. finite unions of polytopes in H. Finite intersections of finite unions of polytopes are again
tinite unions of polytopes, so the same holds for K. O
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Thus, for any closed >;-upper set C we can construct such a sequence of upper sets K;;, with a
Lipschitz boundary. Applying Fact 6 then tells us that y;(K,) > 0 for every such set. Since y is
a finite measure, taking limits yields y;(C) > 0.

I now show the latter part of the result providing a sufficient condition for stochastic mono-

tonicity in the i.i.d. case. A simple change of variable shows that the induced normalized
density ¢ lies in H(T). Let us then show (%, ey VVIZV) is >-stochastically decreasing in V; condi-
tional on V; g; > V; g; for all j # i. By independence, conditional on {V; = v} and {V; < V; Vj # i}
the coordinates {V;};,; remain independent. Now, let V;(k) be distributed like V; conditional on
Vi < k. Note that the cdf of V;(k) is zero above k and below k it is:

Fp(x)
Fp(k)

I now show that for j # i, V;(V;)/V; is >-stochastically decreasing in V;. It suffices to show that:

P[wm

>t

1

Vi=k ] is non-increasing in k for all ¢.

Note this probability is zero for t > 1 and one for ¢ = 0. For t € (0,1), we have:

Fy(t k)

v Fu(k)

Fyp(t k)
F,

It therefore suffices to show that MO non-decreasing in k. Indeed, note that:

9 Em(tk) _ Em(th) |, fm(tk)  fm(k)
ok Fyi(k) — Fm(k) | Fm(tk)  Fum(k) |

Fum(tk) : fm(tk) — fm(k)
However, FA& @ 20 and (6) gives t Fif{ " Fﬁ ® 20

Now, define:

V(V) = Vi(V) Via(Vi) 1 Viia(Vi) Vn (V)
1 ‘/1 /A ‘/1 7 7 ‘/Z AR ‘/Z .

It suffices to show that for every ki < kj, the law of V(kj) >-stochastically dominates that of
V(ka) when V; > 0. However, since V;(V;)/V; is >-stochastically increasing in V; and V;(V;)/V;
are independent for j # i, this follows from Theorem 3.3.10. on p. 94 of Miiller and Stoyan
(2002).

A.11 Proof of Theorem 3

I first show we can without loss restrict attention to symmetric mechanisms, that is, ones where:

for every 0, x1(61,02) =x2(1-61,1-6,). (35)
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Suppose (x1,x7) is the optimal mechanism. Then, by symmetry the mechanism £, ¥, such
that #1(a,b) = x2(b,a) and X»(a,b) = x1(b,a) is also feasible and gives the same objective

value. Since the objective and constraints are linear in the allocation, the symmetric mecha-

nism (57, 2522 is also feasible and optimal.

Now, note symmetry implies that:
x1(1/2,1/2) = x(1/2,1/2).

We now show that for all implementable mechanisms we have the following;:

for every 6 such that 0; > 1/2, x;(6) > x;(0). (36)
Fix t € [1/2,1] and write 6 = (1-t,¢) and § = (t,1-t). By (IC’) we have:

txp(0) +(1-t)x1(0) > txo(B)+ (1-1t)x1(0).
By symmetry, x2(9) = x1(0) and x1(0) = x2(6), and hence:

£xo(0) + (1-1)x1(0) > £x1(0) + (1-1) x2(6),

so (2t—1)(x2(8) —x1()) > 0. Therefore, for all € [1/2,1] we have xp(1-t,t) > x1(1-t,1).

Incentive constraints. I will now show we can relax (IC’) to the following subsets of IC con-

straints:
for all 0, 6" such that 6, >1/2, x(6)-0>x(6")-0, (IC1)

for all 6,6’ such that 6, >1/2, x(0)-6 > x(6")-6. (IC2)

Indeed, I show that, together with properties (35) and (36), they imply all other IC constraints.
To that end, fix any 6 such that 0; > 1/2 and 6’ such that 6, > 1/2 (the other case is symmetric). I

now show:
x(0)-60>x(0")-6.

Sequentially applying (35) and (36), and (IC1), we get:

x(0") -6 =01 x1(07,05) + 6 x2(67,65)
=01 x2(1-67,1-65)+6,x1(1-67, 1-6%)
<Brxp(1-607,1-605)+61x1(1-607,1-6)
<0-x(0).

Now, for t € [1/2,1] define:
Ax(t) =xp(1-t,t)—x1(1-t,1t).
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Furthermore, note we can rewrite the utility of types with 6, > 1/2 as:
U(1-62,02) =07 x2(0) + 61 x1(0)
=6, (x2(6) - x,(8)) + (61 +6) x;(6)
=0 (x2(0) - x1(0)) + x1(1 - 62,6,).

=Ax(0)

Moreover, symmetry and property (36) guarantee that Ax > 0 and A(1/2) = 0. Thus, the enve-
lope formula tells us that:

1 1
U(1-1t) = 1(0,1) - ft Ax(2)dz = x1(0,1) + Ax(1) - ft Ax(2) dz. (37)
We can further use it to recover the “payment rule”, i.e. the allocation of x;:
1
x1(1-t, 1) = 21(0,1) + Ax(1) - ft Ax(2)dz -t Ax(b). (38)

We can then invoke Myerson’s lemma (Myerson, 1981) to conclude that xj, x satisty (IC2) if
and only if Ax is non-decreasing and x; satisfies (38). Moreover, when those conditions hold,
(IC1) is satisfied by the symmetry of the mechanism.

Welfare. We will now transform the expression for welfare. Using the fact that the primitives
and the mechanism are symmetric, as well as (37), we get:

fol U(l-tt) g(1-t,t) A(1-t,t)dt =

1
2/1/2 UL-t,t) g(1—t,£) A(1-t, t)dt

2/1/12 (xl(O,l)+Ax(1)—ft1Ax(z)dz) e(1—t ) A(1 -t 1)dt
1 1
:IE[A(®)](x1(O,1)+Ax(1))—2[1/2ft Ax(2)dz g(1 -1, 1) A(1—t, t)dt
1 t
:IE[A(®)](x1(O,1)+Ax(1))—2[1/2Ax(t) [l/zg(l—z,z))\(l—z,z)dz dt.

Supply constraints. The type distribution is symmetric, so for all symmetric mechanisms:

1 1
fo xl(l—t,t)g(l—t,t)dtzfo x2(1- ) g(1-t,1)dt.
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Moreover, since s; = sy, we can reduce both goods’ supply constraints to a single total supply
constraint:

1
25 > fo (x1(1=t,t) +x2(1-t,t)) g(1 -t t)dt

Exploiting the symmetry of the distribution and the mechanism, we can rewrite it as:

25 >2 [1/12 (x1(1 -t t)+x(1-t, t)) g(1—t,t)dt. (39)

Now, note that:
Ax(0) +2x1 = xp — X1 +2Xx1 = Xp + X71.

Exploiting this identity and the “payment rule” condition (38), I transform (39) as follows:

1
s > fl/z (x1(1-t, ) +x2(1-t,t)) g(1—t,t)dt

fl/i (Ax(t) +2x1(1-t,t)) g(1-t,t) dt

x1(0,1)+Ax(1)+f1/12Ax(t) g(l—t,t)dt—Zfl/l2 ('/tle(z)dZthAx(t))g(l—t,t)dt

1

- x1(0,1)+Ax(1)—f2Ax(t) lz fl/tzgu—z,z)dz+g(1—t,t)(2t-1)] dt.

1/

Transformed problem. We have now showed that the designer’s problem is equivalent to the
following one:

Problem 4. Choose positive x1(8), x2(6) for 0 such that 6, > 1/2 to maximize:

1 t
E[A(®)](x1(0,1) + Ax(1)) —2[1/2 Ax(1) fl/zg(l ~2,2)A(1-2,2)dz dt, (40)

subject to:
1 t P
x1(0,1)+Ax(1)—f1/2Ax(t) lz fl/zg(1—z,z)dz+g(1—t,t)(2t—1) f<s, (41)

x1(1-t,t) =x1(0,1) + Ax(1) - [1 Ax(z)dz—t Ax(t) for te[1/2,1], (42)

and:
Ax(1/2) =0 and Ax(t) non-decreasing.

Indeed, the values of x1, x; for types 6 for whom 6, < 1/2 are pinned down by (35). Let us now
further transform this problem to simplify the positivity constraints on x; and x;.
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Note that by (42), x1(1 —¢,t) is non-increasing for ¢ € [1/2,1]. The positivity constraint on x;
thus reduces to:
x1(0,1) > 0. (43)

Note also that since Ax is non-decreasing and Ax(1/2) = 0, the positivity of x; is guaranteed.

Now, I show that we can without loss assume (43) binds. Indeed, fix any symmetric x1,x,
satisfying the constraints of Problem 4. We can then construct symmetric %1, ¥, such that:

%1(0) = x1(0), %2(0) = x2(0) for 6 such that 6, € (1/2,1),

fl(O,l) =0, 322(0,1) =XQ(O,1).

Indeed, note that ¥, ¥, give the same value of (40), do not affect (41) and (42), while also relax-
ing the monotonicity requirement on Ax. By this observation, we can without loss reduce the
designer’s problem to the following one:

Problem 5. Let Ax(1/2) = 0. Choose a non-decreasing Ax : (1/2,1] - R to maximize:

1 t
E[A(©)] Ax(l)—Zfl/zAx(t) /1/2g(1—z,z)A(1—z,z)dz at, (44)
subject to:
Ax(1)—f1/12Ax(t) [2 fl/;g(l—z,z)dz+g(1—t,t)(2t—1) dt < s. (45)

In fact, we can show that the solution to Problem 5 takes a very simple form:

Lemma 5. Define z* as in (12). Then the following Ax* solves Problem 5:

——— 1pp» forallte(1/2,1].

Proof. Since Ax is non-decreasing and right-continuous up to modification on a null set, there
exists a unique finite Borel measure v on [1/2,1] such that

v({1/2}) = tlii{n/zAx(t), v((a,b]) = Ax(b) - Ax(a) for1/2<a<b<1.
In particular, v([1/2,t]) = Ax(t) for all t € (1/2,1], so
Ax(t) = v([1/2,1]) = f[ gy Tzt 4 (2) (46)

Then we can rewrite (44) as:

fonr (Ew@)] o[ fl/tz 211 0A (1 -0 dt) du(2).
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Similarly, we can rewrite (45) as:

[[1/2’1] (1_[Zl[zfl/tzgu-u,u)du+g(1-t,t)(zt-1)]dt) dv(z) < s.

Unnormalizing types lets us then reduce the designer’s problem to the following one:

Problem 6. Choose a finite, non-negative measure v over [1/2,1] to maximize:

Al/Z 1] (Z]E[Vl * VZ] + ZE[(V2 _Z(Vl + VZ))+]) (fll/(Z). (47)
subject to:
‘/[1/21] (z—(Zz—l)]P[(l—z)Vzzzvl])dy(z) <. (48)

Note that the integrands in (47) and (48) are strictly positive for every z € [1/2,1]. This in turn
implies that the constraint (48) always binds.

I now show that a Dirac measure is optimal in Problem 6. To that end, define:

r(z) = = (ZE[Vi+ V2] + 2E[(Va-2(V1 + ), ]). (49)

é()

Fix any non-negative measure v for which (48) holds with equality and notice that:

/[1/2,1] (zlE[V1+V2] + 21E[max{0,(1—z)Vz—zvl}])dv(z) fl/z r(z) {(z) v(dz)

50
s Zgﬁ}?le]r(z) (50)

IN

Choose z* attaining the maximum and define the positive Dirac measure:
s

RN

Then, by construction it attains the upper bound on the objective in (50) and satisfies (48). Thus,
for any feasible v, there exists a feasible Dirac v* with a weakly larger objective value.

* .

Now, let Ax* be the Ax corresponding to v* in Problem 5. By (46), we have:

Ax*(t) = [ 1, v*(dz) = 145+ forall £>1/2.

( ")
0

Let Ax be the solution to this problem. Then the following expressions for the optimal x;, x; can
be recovered through the definition of Ax, equation (42), and symmetry:

s
when 6; >0, x;(61,02) = (z ) z" 1g,cz%, x;(61,67) = m (z*lgi<z>« + 131,22*).
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This in turn pins down the quantities offered in the optimal mechanism, as written in (14).
Moreover, when z* can equal 1/2, we get two options of size 2s as {(1/2) = 1/2. Finally, note
that z* can never equal 1, as:

r(1/2) =E[Vy + Vo] + 2E[(Va-V1)+] > E[Vi + V3] =7(1).

A.12 Proof of Corollary 2

For z € [1/2,1], define r(z) as in (49). By Theorem 3, mechanism letting agents choose between
2s of goods 1 and 2 is optimal if and only if:

r(1/2) >r(z) forallze[1/2,1]. (51)

Changing variables from z € [1/2,1] to k = 1%2 in [0,1] reduces (51) to:

E[Vy + Vo] +2E[(kVa - V3)+ ]

E[V1+ V2] +2E[(V2-V1):] > ——— A= P(kVa> )

forall k € [0,1].
Since E[V1 + V2] + 2E[(V2 - V1)+] = 2E[ V)], this is equivalent to
21E[V(2>](1 -(1-KP(kV, > Vl)) > E[V; + Vo] +2E[(kV,-V;).] forallke[0,1]. (52)

Fix any such k. By exchangeability, on the event {kV, > V;} we must have V, > V; and hence
(V1,V2) = (V1), V(2)); moreover, conditional on (V(1), V(3)), each index is the maximum with
probability 1/2. Therefore

1 (Vo 1
P(RV22 V1) = 5P|tk ), E[(kV2 = V)] = 5 E [ (kV(2) = Vi) Ty vy k]
Also E[V1 + V2] = E[ V() + V2 ]. Substituting into (52) gives:

V
(1)
E [(V(l) - kV(Z))lv(l)/V(z)zk] < (1-K)E[V(y]P (% > k) ,

which (when the event has positive probability) is equivalent to
E|V -kV, ‘@m < (1-K)E[V(2]
) 2) Voo o | @)

If P (% > k) = 0, the conditional inequality is vacuous.

Let us then prove the sufficiency of (16). For r € (0,1], on the event {V(1)/V(2) = r} we have
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V(l) = T’V(Z). Hence:

V
V1+V2 %=

E

v Vi
r|=E V(1)+V(2)‘W2)=1’ =(1+1’)IE V(z)‘%=1’ . (53)

Now, fix k € [0,1]. On {V(1)/V(2) 2 k} we have 0 < V(1)/V() ~k <1 -k, so:

Va 1 1
(G2t |32 k] -y vy [ 22|

By (53) and (16), E [V(z) | Viy/ Vi) = r] is non-increasing in r. Thus, conditioning on {V(1)/V/2) >

Wi | YO k| - g 54
E V(l)_ V(z) %2 = (54)

k} can only decrease its average:

E|v ‘@ﬂc <E[V,y] (55)
@]y, < FVal
Combining (54) and (55) gives (15).
B Deriving examples

B.1 Example 1

For convenience, identify I with [0,1] via 6 = (t,1 - t). The induced density g of t = @7 and the
weight A(t) are:

1 2
0, 0<t<}, o, 0<t<}
g(t)=12(1-1)? YA ={31-0 i
ﬁ’ %St<1, §/ %§t<1

Fix any supplies and let q1,q2 be the corresponding affordable quantities. We then get that
I'1 = [to,1] and I'p = [0, tg] for ty € (0,1) given by:

tg := 92 .
q1+4q2

We then compute the measures y; and get:

11(A) = /An[to,l]tb(t)dt " %1{1 e A, m(A) = ./An[O,to](l_t) b(t)dt + %1{0%},
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where

1
1 ¢ )
O<t< 5
1-+¢ -
b(t) = (1 >
376 1
R QSt<1.

Now, by Theorem 2 it suffices to show that p >;-stochastically dominates p: for i € {1,2}.
Indeed, since uf(C) > p;(C) is equivalent to y;(C) > 0, Strassen’s Theorem (in the form of
Theorem 4) tells us it suffices to show the following:

forie{1,2} and every >;-upper set C, u;(C) >0. (56)

Note also that >;-upper sets for 1 take the form [a1,1] for a; > ty. For 2, they take the form [0, a;]
for ap < tg. Moreover, Theorem 2 tells us that u1([f9,1]) = #2([0,t0]) = 0. Thus, to show (56), it
suffices to prove that c1,c, > 1/3. I do this in what follows. Note we can without loss show it
for the case where tj € [1/2,1); the other case is symmetric.

Let us then find ¢y, c; by inverting the system Jc = A. To that end, we first obtain:

11 1-tg 11 2 1-to
M= [ —dt==—""2 A :f oo St = — 0
1= iy 212 2t LI R T IY 3to

For I'; = [0,tp] we split at 1/2 and obtain:

1/2 1 fo 1 3ty -1
S f ey ,
M ./0 2(1-1)? ’ 1/2 22 2t

4 1/21 N 1 . 2t(2)+2t0—1
Z_fo (1- 21-1)2° 3(1 f( 2t2 3t 62

Recall the matrix | has the form:

Jiu=Mi+q1T12, J12=-q2T12, Joo =My +q2To1, Jo1=-q1121.
We then get:
g2T1n = V2 g(to) 3, g1 T = V2g(to) (1-19)?, q1T12 = g2 To1 = V28(to) to(1 - to).
Plugging in g(to) = 1/(2t3) gives:

\/E(l—to)z \/_1
—_— Tr1 = — T =goTh =
5 qi1i21 > t% ’ q1l12 =4q2121 = 2 to

g2 T1o =

Therefore | is:

Ity v21-tg _V2
to 2 2
J= 2 (57)
_ﬁ (1—t0) 3tg-1 + Q 1-tg
2 2 2t 2 1



Inverting the system Jc = A yields:

(2+4V2)t2+ (2-2V2)to + (V2-1)
3to((3+2v2)tr-1)

(2-2V2)t2 + (4+6V2)tg -2
3(1-t0)((7+5vV2)tg - (1+V2))

co(to) = , ci(to) =

We now show c;(tp) > % Note:

(to) 1 (2V2-1D)2+(3-2V2)tg+(V2-1)

c -== .

203 3to((3+2v2)tg - 1)

For tq € [1/2,1) the denominator is > 0, and the numerator is > 0 since 2v/2-1 > 0,3 -2v/2 > 0,
and /2 -1 > 0. Hence cy(tp) > %

Finally, we show c;(tp) > 3. Note:

1 (9+3V2)2 -4ty +1

c1(to) - 7 e

3 3(1-t0)((7+5vV2)tg - (1+V2))

For ty € [1/2,1) the denominator is > 0. The numerator is the convex quadratic Q(t) := (9 +

3v/2)#2 — 4t + 1 whose minimizer t* = 9+§¢§ < 1; thus Q is increasing on [1/2,1) and
5+3v2
Qlto) 2 Q(1/2)= 22 50,

Therefore c1(tp) > %

B.2 Example 2
For z € [1/2,1], define r(z) as in (49). By symmetry of f under (v1,v;) ~ (vp,v1), we have:
E[V1] = E[V,].

Moreover, f is symmetric under (v1,v;) = (1-v1,1-v7) so E[V;] =1-E[V;] and hence:
1
]E[Vl] = ]E[Vz] = E, ]E[Vl + Vz] =1.

Also note that:

Vacz(Vi+Va) 20 = szlzjvl.

We can therefore define:
R. := {(vl,vz) (0,1 02> ffzvl},
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And write:
2+ 2 [ ((1-z)vp —zv1) f(v1,02) doq doy

z-(2z-1) [fz, f(v1,02) dvydo,

r(2)

Computing the integrals yields:

17292° - 292922 +1607z-300 1 __ 5
30(9523 -15522+83z-15) 2~ 9
r(z) = 3 X
2(192°% + 34722 - 31z + 25) 5 .
’ =<z<
15(3823 + 22 +4z +5) 9

Checking first- and second-order conditions in both regions reveals that the unique maximizer

solves:
4389z* — 83623 + 38222 — 1140z + 85 = 0,

giving z* ~ 0.63. Thus, by Theorem 3, the optimal mechanism lets agents choose between g, of
good 1, g1 of good 2, and a mass gy of an equal mixture of the two goods, where q; < gg.
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