
Pricing priorities in waitlists*

Filip Tokarski
Stanford GSB

December 14, 2024

Abstract

I study the problem of introducing pricing into waitlists when extracting revenue
from participants is undesirable. The designer hands out heterogeneous goods to arriv-
ing agents and aims to maximize allocative efficiency. She can incentivize agents to join
socially optimal waitlists by charging joining fees and allowing agents to pay to reduce
their wait-time. I show that screening through wait-times, while not wasteful, can only
extract information about agents’ relative values for the offered goods. In contrast, us-
ing payments incurs waste but allows for screening on absolute valuations, improving
allocative efficiency. This trade-off has a relatively simple resolution: the optimal mech-
anism charges a price for joining only one of the waitlists and offers a discrete menu of
pay-to-skip options.

1 Introduction

Waitlists are the most common alternative to market-based allocation mechanisms. Fre-
quently employed by policymakers prioritizing recipients’ welfare and unwilling to extract
revenue from participants, they are used to allocate goods as diverse as affordable housing,
daycare spots, and camping permits. However, unlike prices, waitlists do not allow partic-
ipants to express how much they value the distributed good. For instance, whenever joining
the waitlist is free, everyone with positive value for the good has an incentive to sign up,
resulting in some of the supply being given to those with little need for it. This paper asks
how such issues can be addressed by combining waitlists with pricing, while recognizing
that extracting revenue from participants may in itself be undesirable.

I study a model where heterogeneous goods and agents arrive over time. Each kind of good
is associated with a separate waitlist and arriving agents decide which waitlist to join. The
designer aims to allocate goods to those who value them most, and thus to incentivize agents
to join socially optimal waitlists. She can do so by adjusting the wait-times in the waitlists
and by charging participants fees. Specifically, the designer can price joining waitlists and
let agents pay to reduce their wait-time in a particular waitlist (which I call ‘pay-to-skip

*I am grateful to Joey Feffer, Federico Llarena, Sam Wycherley, Rafael Berriel, Flint O’Neill, Andrzej Skrzy-
pacz, Piotr Dworczak, Michael Ostrovsky, Ilya Segal and Rebecca Diamond their helpful comments and sug-
gestions.

1

options’). However, the designer views extracting money from participants as wasteful. She
can therefore combine two screening instruments: wait-times and payments. Wait-times
are a non-wasteful instrument, but since the costs of waiting are associated with delaying
the good’s receipt, they can only extract information about agents’ relative values for the
offered goods, and not their absolute values for them. Payments, on the other hand, incur
waste by extracting resources from participants, but allow the designer to screen on agents’
absolute valuations, improving allocative efficiency. I describe the structure of the optimal
mechanism: it charges a price for joining only one of the waitlists and offers finitely many
pay-to-skip options.

From a technical perspective, my model is an instance of a tractable multidimensional screen-
ing problem. I characterize the design of pricing schemes for two waitlists as two intercon-
nected single-dimensional screening problems. The interaction between them is summa-
rized by a boundary in the type space that separates the sets of types who join each waitlist.
The multidimensional problem can then be broken up into two stages: first, determining
the optimal way to implement a given boundary, and second, solving an optimal control
problem to select the optimal boundary among all implementable ones.

The literature has not studied combining waitlists with payments in settings with hetero-
geneous goods. However, a substantial literature examines such waitlists where monetary
transfers are infeasible. Ashlagi et al. (2024) demonstrate that allocative efficiency can be
improved by coarsening agents’ information about the qualities of allocated goods. Arnosti
and Shi (2020) compare common non-monetary mechanisms in terms of targeting and match
efficiency. Barzel (1974), Bloch and Cantala (2017), and Leshno (2022) observe that in envi-
ronments with homogeneous waiting costs, wait-times may ‘act as prices’, screening for
agents with higher valuations. I refine this intuition by distinguishing between waitlists,
where waiting is passive and its cost stems from delayed receipt, and queues, where agents
actively waste time waiting. I show that in the former case, the ability of wait-times to ‘act as
prices’ is impeded, as they can only screen on agents’ relative values for the offered goods.
My work also relates to the literature on allocation problems without money (e.g. Hylland
and Zeckhauser (1979) and Budish (2011)). While my paper shares the motivation that using
money can be costly or undesirable in some settings, it relaxes the extreme approach of not
using it at all and investigates whether limited use of money can still be beneficial. Finally,
the wasteful nature of payments in my setting relates to the literature on costly screening
and money burning (e.g. Hartline and Roughgarden (2008), Condorelli (2012)). However,
this literature focuses on cases where the designer only has access to the wasteful screen-
ing device. An exception is Yang (2021) who considers a monopolist with both wasteful
and non-wasteful instruments and characterizes cases where the wasteful one should not be
used. In contrast, this paper focuses on optimally combining such instruments.

2 Model

A designer distributes two types of goods, A and B, to agents with heterogeneous prefer-
ences. Agents’ types are characterized by a pair (a, b) ∈ [0, 1]2, where a and b represent their
values for goods A and B, respectively. The utility of a type-(a, b) agent who receives good

2

x, pays p, and waits for time t is given by:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

e−ρt(a − p) if x = A,

e−ρt(b − p) if x = B,

where ρ > 0 is the discount rate. Note the payment occurs at the end of the waiting period.

Goods and agents arrive continuously over time. At every instance τ ∈ R, flow masses
µA, µB > 0 of goods A and B arrive, with µA + µB = 1. Concurrently, a unit flow mass of
agents arrives, with types (a, b) distributed according to a joint distribution F. I assume that
F has full support on [0, 1]2 and has a Lipschitz continuous and differentiable density f .

There are two separate first-come-first-serve waitlists, one for each good. The designer can
choose prices for joining each waitlist, as well as menus of pay-to-skip options for them.
That is, she can offer agents joining a particular waitlist the choice to pay extra to reduce
their wait-time in it. Such pay-to-skip menus can involve a continuum of options and can
differ between the two waitlists. Arriving agents must therefore choose which waitlist to
join (if any) and whether to pay extra to reduce their wait-time.

I focus on mechanisms that admit a steady state of the system. This means that the distri-
bution of types in each waitlist is stationary, as are the distributions of types joining and
leaving each waitlist (which are also always equal to each other). Thus, under such mecha-
nisms, almost all agents of the same type choose the same waitlist and pay-to-skip option,
regardless of when they arrive. By the Revelation Principle, we can then think of the de-
signer as choosing steady state allocation rules for payments p ∶ [0, 1]2 → R+, wait-times
t ∶ [0, 1]2 → R+ and goods x ∶ [0, 1]2 → {A, B,∅}. I call a triplet (p, t, x) a mechanism. The
designer selects a mechanism subject to the following constraints:

for all (a, b), (a′, b′) ∈ [0, 1]2, U[a, b, (p, t, x)(a, b)] ≥ U[a, b, (p, t, x)(a′, b′)], (IC)

for all (a, b) ∈ [0, 1]2, U[a, b, (p, t, x)(a, b)] ≥ 0, (IR)

∫ 1x(a,b)=A dF(a, b) ≤ µA, ∫ 1x(a,b)=B dF(a, b) ≤ µB, (S)

where U[a, b, (p, t, x)(a′, b′)] denotes the utility type (a, b) gets from reporting type (a′, b′).
The supply constraints (S) ensure that the mass of agents assigned to either waitlist in any
period does not exceed the mass of the corresponding good that arrives in it. I also assume
agents can choose not to participate and receive nothing at no cost. I call a mechanism
(p, t, x) satisfying (IC),(IR) and (S) feasible.

The designer chooses a feasible mechanism to maximize the following objective combining
revenue and allocative efficiency:

γ ⋅ R +W,

where γ ∈ [0, 1], and:
R = ∫ p(a, b)dF(a, b),

3

W = ∫ 1x(a,b)=A(a − p(a, b))
´¹¹¸¹¹¶

Agents getting good A

+ 1x(a,b)=B(b − p(a, b))
´¹¹¹¸¹¹¹¶

Agents getting good B

dF(a, b).

The parameter γ captures the value the designer puts on revenue. In one extreme, γ = 1, the
designer is indifferent about payments made to her by the participants; this may correspond
to the case where the designer can costlessly rebate the revenue to them. The other extreme,
γ = 0, means that the designer considers all such payments completely wasted. This might
correspond to an environment where payments are not monetary, but represent a wasteful
ordeal such as form-filling or travelling to a distant office. Intermediate values of γ represent
cases where the designer values money in agents’ pockets more than in her own, but also
has some use for the generated revenue. This case may capture the nature of social programs
whose participants are less wealthy than the general taxpayer, so a redistributive designer
would not want to use them to generate revenue.1 For γ to be intermediate, rebating revenue
to the participants has to be costly. In the case of private enterprises, this could be because
monetary payments are taxed (while in-kind benefits are not). In the case of government
programs, this could be because distributing cash lacks the screening benefits of in-kind
transfers. For instance, when the designer hands out a free (or subsidized) inferior good,
only relatively poor agents will want to participate as wealthier ones can afford higher-
quality alternatives. Thus, the subsidy is automatically targeted to those who need it most
(Besley and Coate, 1991). As soon as the designer hands out cash, however, such targeting
disappears as money is desired by everyone, regardless of wealth.

The latter term W in the objective captures the value provided by the good to those who
receive it. Observe, however, that wait-times do not explicitly appear in W. While this may
seem counterintuitive, it follows naturally from the properties of steady states when the
designer cares only about agents’ values for the goods, and not their arrival times. That is,
when the designer faces two agents who value the good identically but differ in how long
they have been waiting already, she is indifferent about giving the good to either. Note,
moreover, that as long as the designer hands out all goods as soon as they arrive, wait-times
have a zero-sum nature—giving the good earlier to one agent requires pushing other agents
back. Furthermore, in the steady-state, the types of agents pushed back this way are always
identical to the agent who had been moved forward. The designer is therefore indifferent
between any two steady states which charge the same types the same payments and give
them the same goods.

A further consequence of this logic is that the designer is indifferent about certain types
‘skipping ahead’. To see why, consider a particular steady state and compare it to another
which differs only in that the wait-times of all agents with some particular type are reduced.
Since the same types still join the same waitlists, the inflows and outflows of all types are
unchanged relative to the old steady state. Moreover, since the wait-times were reduced for

1While the model does not explicitly account for wealth differences or heterogeneous welfare weights
among agents, this can be viewed as an approximation of a scenario where such differences exist but are
relatively small between participants compared to the gap between participants and the average taxpayer. This
is especially likely when the designer allocates inferior goods, such as public housing in undesirable areas.
The designer’s welfare-weighted objective can then be approximated by a constant weight on all participants,
which is distinct from that on revenue, representing her welfare weight for the average taxpayer.

4

all agents of a given type, this effectively corresponds to a ‘reindexing’ of such types—agents
of that type arriving later now replace ‘earlier copies of themselves’ (Figure 1).

Arrives t

ˇ(a1,b1)

Arrives t

ˇ
(a2,b2)

Arrives t + 1

ˇ(a1,b1)

Arrives t + 1

ˇ
(a2,b2)

Arrives t + k

ˇ(a1,b1)

Arrives t + k

ˇ(a2,b2)
⋯ ⋯

.......

Arrives t

ˇ(a1,b1)

Arrives t + 1

ˇ(a2,b2)

Arrives t + 1

ˇ(a1,b1)

Arrives t + 2

ˇ(a2,b2)

Arrives t + k

ˇ(a1,b1)

Arrives t + k + 1

ˇ(a2,b2)
⋯ ⋯

.......

Figure 1: Skipping ahead only ‘reindexes’ agents of the same type.

Consequently, when the designer offers agents the options to pay to skip, she does not do
so for the sake of affecting their wait-times. Instead, she uses such options as a means of
attracting certain types to join a particular waitlist, and therefore to affect the allocation of
goods between types.

3 Feasible mechanisms

Let us first describe the space of feasible mechanisms. It will be convenient to characterize
them in terms of waitlist-specific indirect utility functions UA, UB ∶ [0, 1] →R+, defined as:

UA(a) = max
(a′,b′)∶ x(a′,b′)∈{A,∅}

e−ρ⋅t(a′,b′)(a − p(a′, b′)), (1)

UB(b) = max
(a′,b′)∶ x(a′,b′)∈{B,∅}

e−ρ⋅t(a′,b′)(b − p(a′, b′)). (2)

Intuitively, UA(a) and UB(b) give the highest utility type (a, b) could get from selecting some
pay-to-skip option from the A- and the B-waitlists, respectively (or not participating). Note
that waitlist-specific indirect utilities depend only on one dimension of the type—an agent’s
value for good B does not affect her choice of pay-to-skip option in waitlist A.

We will use UA and UB to describe agents’ choices of waitlist. Indeed, type (a, b) for whom
UA(a) > UB(b) will join the A-waitlist (x(a, b) = A) and vice versa. Let us also define the
lowest participating values as follows:

a = sup{a ∶ UA(a) = 0}, b = sup{b ∶ UB(b) = 0}.2 (3)

2Since the mechanism offers a non-participation option, we always have UB(0) = UA(0) = 0. Thus, these
suprema are well-defined.

5

We can now equivalently characterize feasible mechanisms in terms of the waitlist-specific
indirect utility functions UA, UB they induce. We will say that UA, UB are feasible if there
exists a mechanism inducing them.

Lemma 1. Waitlist-specific indirect utility functions UA, UB are feasible if and only if:

1. UA, UB are convex,

2. U′A(a), U′B(b) ∈ [0, 1] whenever they exist,

3. UA(0) = UB(0) = 0,

4. ∫ 1UA(a)>UB(b) dF(a, b) ≤ µA, ∫ 1UA(a)<UB(b) dF(a, b) ≤ µB.

While proof is in the appendix, the result follows from Myerson’s lemma (Myerson, 1981)
and an envelope argument (Milgrom and Segal, 2002). Intuitively, point 1 corresponds to the
mechanism satisfying (IC). Point 2 is due to discounting terms e−ρ⋅t being bounded above
by 1, and thus limiting how steeply agents’ indirect utilities can change with type. Point 3
corresponds to (IR) and point 4 captures the supply constraint (S).

I later use the above characterization to rewrite the designer’s problem as one of selecting
waitlist-specific indirect utility functions UA, UB. The following result helps us by charac-
terizing how agents self-select into the two waitlists given UA and UB:

Definition 1. Let a boundary be a function g ∶ [a, a] → R that is continuous, strictly increasing
and satisfies a ≤ 1 and g(a) ≤ 1, with one of them holding with equality.

Lemma 2. All types point-wise below the lowest participating values do not join either waitlist, that
is x(a, b) = ∅ for all (a, b) < (a, b).3 Suppose a positive mass of agents joins either waitlist. Then the
waitlist choices of types (a, b) > (a, b) are characterized by a boundary g ∶ [a, a] →R which satisfies:

∫
1

a
ΦA(a)da ≤ µA, ∫

1

g(a)
ΦB(b)db ≤ µB, (S’)

where:

ΦA(a) ∶= ∫
g(min[a,a])

0
f (a, v)dv, ΦB(b) ∶= ∫

g−1
(min[b,g(a)])

0
f (v, b)dv.

Then a type (a, b) > (a, b) joins waitlist A if it is below the boundary g, that is, if g(a) > b, and
joins waitlist B if it is above the boundary g, that is, if g(a) < b. Moreover, types at the boundary are
indifferent between joining either waitlist, thus:

UA(a) = UB(g(a)) for all a ∈ [a, a]. (I)

I then say that UA, UB implement the boundary g.

Lemma 2 describes how UA and UB pin down the waitlist choices of almost everyone (in-
different types constitute a measure-zero set). These choices are summarized in Figure 2a.

3When comparing vectors, I will use ≥ and > for pointwise comparisons.

6

a

b

(a1, b1)g(
a)

B

A
∅

a

b

Figure 2a: Types below the boundary (orange)
self-select into waitlist A and types above it (blue)
self-select into waitlist B.

a

b

g(
a)

a

b

1

1

Figure 2b: The supply condition (S’) ensures that
the probability masses below the boundary (or-
ange) and above it (blue) are at most µA and µB,
respectively. The red arrows mark the direction of
integration in the left-hand-sides in (S’).

Types (a, b) for whom (a, b) < (a, b) do not participate. This happens when entering the
waitlists is priced at a and b, so such types never find joining worth it. On the contrary,
anyone who values one of the goods above the corresponding price will join some waitlist—
doing so guarantees them positive surplus, even if it is realized after a long wait.

Let us now give an intuition for the waitlist choices of participating types. Consider some
type (a1, b1) choosing waitlist A (Figure 2a). Then any type (a, b) with a > a1 and b < b1
will also join waitlist A—since she values the A-good even more than (a1, b1) and values the
B-good even less, all options in waitlist B are strictly less attractive to her than they are to
(a1, b1). We can now notice that the types who are indifferent between their best options in
both waitlists lie on an upwards-sloping curve g originating from (a, b). By the above logic,
all types below this curve join waitlist A and pick some pay-to-skip option from its menu,
while types above it join waitlist B.

We can thus think of our multidimensional mechanism design problems as two single-
dimensional problems connected endogenously through the boundary g. While agents on
its either side effectively face one-dimensional problems, making one of the waitlists more
attractive invites more types to switch to it, effectively deforming the boundary.

Lemma 2 also changes the way we express the supply constraint. Rather than look at alloca-
tions x(a, b), it takes advantage of the fact that types joining waitlist A (B) are below (above)
the boundary. It then measures the masses of agents joining either waitlist by integrating
over agents below and above g (Figure 2b).

4 Role of payments

I now explain why the designer might benefit from incorporating payments into the mech-
anism despite the fact that such payments generate waste. To that end, let us first consider
two extreme cases: one where the designer does not use money, i.e. does not price joining
waitlists or offer pay-to-skip options, and one where payments are not wasteful, so γ = 1.

7

4.1 Mechanisms without money

Proposition 1. Consider a mechanism without money, so one where p(a, b) ≡ 0, that allocates the
good to some agents. Then there exists k ∈ (0,∞) such that all types with a/b > k join waitlist A and
all types with a/b < k join waitlist B.

Proof. Note that unless the designer allocates nothing, she must allocate the whole available
supply of both A and B. Suppose that some type (a, b) received one of the goods for zero
payment while a positive mass of agents received nothing. Then almost all such agents
would strictly prefer to report (a, b). (IC) thus requires that all agents receive either good,
implying that a = 0 or b = 0. Since a unit mass of goods is allocated, the supply conditions
(S’) for both goods have to hold with equality.

Now, when p(a, b) ≡ 0, all types joining either waitlist must have the same waiting time—
otherwise all types joining a waitlist would report the type with the shortest wait-time in
it. Let tA and tB be the wait-times in the two waitlists. The boundary g for this mechanism
must then satisfy the boundary indifference condition:

a ⋅ e−ρ⋅tA = g(a) ⋅ e−ρ⋅tB for all a ∈ [0, a]. (I)

Thus, by Lemma 2, all types for whom a/b > k = eρ(tA−tB) join waitlist A, and all types for
whom a/b < k join waitlist B.

Under such a mechanism joining either waitlist is free, and so all applicants with non-zero
value for either good will join one of the waitlists. Moreover, in the absence of payments,
the ‘market will clear’ based on wait-times—if good A is overdemanded, that is, preferred
by more agents than the mass of this good—the wait-time for it will be longer. This will in
turn deter some agents who prefer good A from joining this waitlist and encourage them
to wait for good B instead. Importantly, however, wait-times can only screen agents based
on their relative values for the two goods, that is, the ratio a/b. Graphically, this corresponds
to the boundary g partitioning the type space along a ray originating from zero (Figure 3).
The slope of the boundary reflects the ratio a/b for which agents are indifferent between the
waitlists. This slope is pinned down by the relative supply of the two goods.

a

b

g(a)
B

A
a

b

Figure 3: Without money, agents choose waitlists based on a/b.

Intuitively, waiting can only screen on relative values because its costs come from discount-
ing, and thus are multiplicative with agents’ values for the goods. This draws a contrast

8

between waitlists, where waiting is passive, and its cost comes from delaying receipt, and
queues where agents actively waste time waiting. In the latter case, the cost of waiting is the
alternative cost of time, which is independent of one’s value for the offered good.

4.2 Non-wasteful payments (γ = 1)

In the case where payments are not wasteful, the optimal mechanism takes a simple form:

Proposition 2. Suppose payments are not wasteful, so γ = 1. Then the optimal mechanism does not
offer any pay-to-skip options and prices only one waitlist. The joining price is chosen to equalize the
wait-times in both waitlists.

Proof. Since γ = 1, the designer’s objective can be written as:

∫ 1x(a,b)=A ⋅ a + 1x(a,b)=B ⋅ b dF(a, b).

Consider first the relaxed problem where the designer chooses the mechanism subject only
to supply constraints (S). The optimal mechanism would then allocate all of the available
A-good to the µA agents with the highest difference a − b, and allocate the B-good to the
µB remaining ones (Figure 4). Thus, such a mechanism would correspond to a boundary
g∗ ∶ [a∗, a∗] → R with a slope of 1 for which the supply conditions (S’) hold with equality
(such a boundary g∗ exists by the continuity of the density f). Suppose that g∗ crosses the a
axis first, that is, a∗ ≥ 0 (the opposite case is symmetric). Then the relaxed-optimal boundary
g∗ can be implemented by the following waitlist-specific indirect utilities:

UA(a) =max[0, a − a∗], UB(b) = b,

which are feasible by Lemma 1. Recall also that the indirect utilities of types (a, b) in wait-
lists A and B are equal to UA(a) and UB(b), respectively. Thus, by the envelope formula,
U′A(a), U′A(b) = e−ρ⋅t(a,b) for such types. Since U′A(a) = U′B(b) = 1 for all such types, all agents’
wait-times must be equal.

a

b

g(
a)B

A
a

b

Figure 4: Optimal allocation subject only to supply constraints.

When transfers are not wasteful, the optimal mechanism simply prices entry to the wait-
list for the overdemanded good. This simple mechanism not only solves the problem with

9

private information about type, but also implements the first-best allocation subject only to
supply constraints. This is unsurprising—when the designer is indifferent about transfers
between herself and agents, prices costlessly elicit agents’ valuations and assign the goods
to whoever values them most. Given the efficiency properties of prices, screening through
wait-times becomes redundant, and even harmful. This is because, as noted in the previous
section, wait-times can only screen agents on their relative preferences. Since the designer’s
objective depends on agents’ absolute values (which screening with prices can recover) alter-
ing allocations based on relative values could only worsen the outcome.

4.3 Trade-off: efficient assignment vs. minimizing payments

Juxtaposing the above examples illustrates the main trade-off associated with screening
through prices. When the designer does not use payments in the mechanism, agents will
still self-select into waitlists based on their values for the goods. However, they will do so
only based on their relative values for them. Consequently, the designer will not be able to
distinguish between two agents whose value ratios a/b are equal but whose absolute values
differ. However, the designer cares about these two agents’ allocations to different extents. If
the former agents’ values for both goods are higher, it is more important to give her the good
she prefers. The first-best mechanism would therefore distort the assignments to agents
whose values for both goods are low (by giving them the less demanded one) and leave the
overdemanded good to those whose absolute value for it is large. This is exactly what the
mechanism from Proposition 2 manages to accomplish. However, it does so through charg-
ing relatively high prices to agents joining the waitlist for the overdemanded good—this
extreme solution might not be optimal when transfers are wasteful.

Introducing payments to the mechanism therefore presents a trade-off: on the one hand, it
lets the designer screen on absolute rather than relative values, which lets her allocate goods
more efficiently. Graphically, this lets her produce an ‘area split’ more like the right panel
of Figure 5 than the left one. On the other, charging agents money generates waste. While
Figure 5 illustrates the two extreme ends of this trade-off, the designer might in general
prefer to compromise the ‘area split’ to reduce the payments that achieving it requires.

a

b

g(a)
B

A
a

b

a

b

g(
a)B

A
a

b

Figure 5: The designer trades off the ‘area split’ against the size of payments.

10

5 Optimal mechanism

We now turn to the case where payments are at least somewhat wasteful, that is, γ < 1. I
impose the following technical assumption on the space of admissible mechanisms:

Assumption 1. The designer is restricted to allocation rules for time, t ∶ [0, 1]2 → R+, that are
piecewise continuously differentiable in each dimension of the type.

Importantly, Assumption 1 does not require the allocations of wait-times to be continuous,
but only piecewise continuous. The assumption guarantees that the boundary g separating
types who join waitlists A and B is well-behaved.

Fact 1. Let g be the boundary implemented by any mechanism satisfying Assumption 1. Then g is
piecewise twice continuously differentiable.

The proof is in the appendix. Under Assumption 1, the structure of the optimal mechanism
is pinned down by the following result:

Theorem 1. The optimal mechanism prices entry to only one waitlist and offers finitely many pay-
to-skip options.

While the model allows for offering a continuum of pay-to-skip options for each waitlist,
Theorem 1 prescribes a relatively simple payment policy: a discrete menu of pay-to-skip
options and a single price charged for joining only one of the waitlists; intuitively, the one
for the overdemanded good.

The proof shows that, in optimum, the boundary cannot have strictly convex or concave re-
gions, and so each smooth piece of the boundary has to be linear. Each kink in the boundary
then corresponds to a different option in the pay-to-skip menu. The proof of Theorem 1 also
yields the following corollary:

Corollary 1. Suppose the boundary g∗ associated with the optimal mechanism is differentiable. Then
the optimal mechanism does not offer any pay-to-skip options and prices entry to only one waitlist.4

Interestingly, simulations suggest that the optimal boundary may be smooth for a wide class
of distributions. Indeed, the intuitive reason underlying the lack of strictly convex and con-
cave parts of the boundary also applies in the case of ‘kinked’ convex and concave regions.
However, formalizing this intuition for non-differentiable regions of the boundary presents
technical difficulties. I conjecture that a reasonably permissive condition on the density f
can be formulated under which the hypothesis of Corollary 1 is without loss.

6 Proof of Theorem 1

I break the proof up into steps that let me highlight the core intuitions, along with the fea-
tures of the model that make it tractable despite multidimensional types. In the first step I

4Strictly speaking, pay-to-skip options can be assigned to a zero-measure set of types.

11

rewrite the planner’s objective in terms of waitlist-specific indirect utilities UA, UB and the
boundary g they implement. I then break the problem up into two stages: in the first stage,
I consider all the UA, UB pairs that implement a particular boundary g and find the one that
does so optimally. Then, in the second stage, I consider mechanisms optimally implement-
ing different boundaries g and look for the optimal boundary g∗. I first demonstrate that the
optimal boundary does not exclude any types, that is, almost every type gets either good A
or good B in optimum. I then use optimal control tools to show that the optimal boundary
g∗ has to be piecewise linear.

Throughout the proof I will focus on piecewise twice continuously differentiable bound-
aries. Let G be the set of all boundaries g satisfying this additional requirement.

6.1 Objective in terms of indirect utilities

Let us first recast the planner’s problem as one of choosing the optimal UA and UB. Recall,
however, that the planner’s objective did not feature agents’ utilities per se, but rather the
values (net of payments) recipients derived from the goods. Thus, the objective will feature
UA and UB normalized by the agents’ discounting terms e−ρ⋅t. We therefore need to re-
express the discounting term in terms of UA and UB. Observe, however, that the discounting
term is analogous to an allocation in a standard quasilinear screening problem, as it is the
only quantity that multiplies the (relevant component) of the agent’s type. Thus, by the
envelope theorem, this discounting term is equal to U′A or U′B.

Lemma 3. Suppose that under the optimal mechanism a positive mass of agents joins either waitlist.
We can then characterize the designer’s problem as follows. Choose convex, increasing and Lipschitz
continuous UA, UB ∶ [0, 1] →R+ satisfying UA(0) = UB(0) = 0 to maximize:

∫
1

a

⎛
⎝

a ⋅γ + (1−γ) ⋅ UA(a)
U′A(a)

⎞
⎠
⋅ΦA(a)da +∫

1

g(a)

⎛
⎝

b ⋅γ + (1−γ) ⋅ UB(b)
U′B(b)

⎞
⎠
⋅ΦB(b)db,

subject to the supply condition:

∫
1

a
ΦA(a)da ≤ µA, ∫

1

g(a)
ΦB(b)db ≤ µB. (S’)

I will call pairs UA, UB satisfying the conditions of this problem admissible.

Proof. We can rewrite the designer’s objective as:

∫ 1x(a,b)=A(a − (1−γ) ⋅ p(a, b)) + 1x(a,b)=B(b − (1−γ) ⋅ p(a, b)) dF(a, b).

We aim to express p(a, b) in terms of UA, UB. First, consider types with x(a, b) = A. For them:

UA(a) = e−ρ⋅t(a,b)(a − p(a, b)).

12

Moreover, by the envelope theorem U′A(a) = e−ρ⋅t(a,b). Thus, for these types we have:

a − p(a, b) = UA(a)
U′A(a)

⇒ p(a, b) = a − UA(a)
U′A(a)

,

with an analogous equality holding for types taking B. Substituting in yields:

∫ 1x(a,b)=A
⎛
⎝

a ⋅γ + (1−γ) ⋅ UA(a)
U′A(a)

⎞
⎠
+ 1x(a,b)=B

⎛
⎝

b ⋅γ + (1−γ) ⋅ UB(b)
U′B(b)

⎞
⎠

dF(a, b).

We can now use Lemma 2 to rewrite objective in terms of the implemented boundary g:

∫
(a,b)>(a,b)

1b<g(min[a,a])
⎛
⎝

a ⋅γ + (1−γ) ⋅ UA(a)
U′A(a)

⎞
⎠
+1b>g(min[a,a])

⎛
⎝

b ⋅γ + (1−γ) ⋅ UB(b)
U′B(b)

⎞
⎠

dF(a, b),

which we can further break up into two integrals in terms of a and b, respectively. Finally,
we can rewrite these integrals in terms of the density f to obtain the form of the objective
stated in the lemma.

Now, by Lemma 1, UA, UB are feasible if and only if they are convex, UA(0) = UB(0) = 0,
U′A(a), U′B(b) ∈ [0, 1], and they satisfy the supply condition:

∫ 1UA(a)>UB(b) dF(a, b) ≤ µA, ∫ 1UA(a)<UB(b) dF(a, b) ≤ µB.

However, by Lemma 2, this last condition is equivalent to (S’). Moreover, the requirement
that U′A(a), U′B(b) ∈ [0, 1] can without loss be replaced by UA, UB being increasing and Lips-
chitz continuous. The original requirement can then be ensured by rescaling UA, UB appro-
priately. Note that such rescaling does not affect boundary indifference (I) or UA

U′A
and UB

U′B
,

and thus does not affect the implemented boundary or the objective.

6.2 Optimally implementing a fixed boundary

We now fix any piecewise twice continuously differentiable boundary g ∈ G and look for the
waitlist-specific indirect utilities UA, UB that optimally implement it. Notice that since the
supply constraint (S’) is expressed purely in terms of the boundary g, we need not worry
about whether UA and UB implementing our fixed boundary satisfy it.

By examining the objective in Lemma 3, we can see that making UA and UB ‘more convex’
decreases the value of the objective. To see why, note that the objective includes the terms:

UA(a)
U′A(a)

,
UB(b)
U′B(b)

,

with positive weights. When UA and UB are linear (as ‘non-convex’ as can be), these grow
with a and b at the rate of 1. However, as soon as UA and UB become strictly convex on some
interval, they are bound to grow slower: the value accrued on the interval is then divided
by the function’s highest slope on it. Thus, we will aim to find the ‘least convex’ UA and UB

13

that implement the fixed boundary g. Recall also that whenever UA and UB implement g,
they satisfy the boundary indifference condition (I):

UA(a) = UB(g(a)) for all a ∈ [a, a]. (I)

Differentiating it gives:
U′A(a) = U′B(g(a)) ⋅ g

′(a). (DI)

Now, consider an interval on which the boundary g is convex. On this region, the ‘least
convex’ we can possibly make UB(g(a)) is to make it linear, and so make U′B(g(a)) constant.
This in turn means that U′A(a) has to be proportional to g′(a) on that interval. Conversely,
whenever g is concave on some interval, U′A(a) is constant on it and U′B(a) is inversely
proportional to g′(a) (Figure 6). This intuition underlies the following lemma:

Definition 2. Let an open interval I be a convex (concave) region of g if g is convex (concave) on
I but not on any larger open interval containing I .

Lemma 4. Suppose payments are wasteful, so γ < 1. Fix any implementable boundary g ∈ G. Then
the UA, UB optimally implementing g are unique up to scaling and satisfy the following properties:

1. For every a ∈ (a, a), at least one of U′A(a) and U′B(g(a)) exists.

2. On convex regions, U′A(a) ∝ g′(a) and U′B(g(a)) is constant.

3. On concave regions, U′B(g(a)) ∝ 1/g′(a) and U′A(g(a)) is constant.

4. Unless a = g(a) = 1, one of U′A(a) and U′B(g(a)) exists. If a < 1, U′A is constant on (a, 1]. If
g(a) < 1, U′B is constant on (g(a), 1].

U′B constant

U′A constant

a

b

Figure 6: U′B (U′A) is constant where the boundary g is convex (concave).

The motive for making UA and UB ‘as non-convex as possible’ has a corresponding economic
intuition. Recall that in standard mechanism design problems, indirect utility is strictly
convex on some region when agents with types in this region are separated, i.e. get distinct
allocations. Recall also that in our problem, the ‘allocation’ corresponds to the discounting
term e−ρ⋅t. Thus, whenever UA is strictly convex on some region, agents who join waitlist A

14

and have values a in that region must all have different wait-times. Supporting this wait-
time allocation, however, requires charging agents with lower wait-times more, which is
wasteful. As mentioned, inducing such separation can still be useful to the extent that it
serves to attract agents to join a specific waitlist (produce a ‘better area split’). However,
conditional on fixing the area split (which fixing the boundary effectively means) increasing
separation, and thus payments, only generates waste.

Given that, consider the effects of creating separation for types on both sides of the same
region of the boundary. Assigning different pay-to-skip options to agents on the A-side
encourages additional high-a types to join this waitlist, as it now offers them larger infor-
mation rents. Graphically, this bends the boundary upwards, making it convex there and
expanding the region under it. Now, notice that having agents on the B-side of such a region
also take different pay-to-skip options would generate the exact opposite effect and attract
agents to waitlist B! Since offering separation requires increasing wasteful payments, this
would never be optimal. The designer would then prefer to make the allocations on both
sides ‘less separating’ in such a way that they would still implement the same boundary g.

Finally, note that the problem of finding the optimal UA, UB that implement a specific bound-
ary is greatly simplified by the fact that the designer does not care about the assignment of
wait-times. In a static model where the designer allocates amounts of the good (and has pref-
erences over these amounts), she could find it beneficial to make the allocation on both sides
of the boundary more separating, even if this had no effect on the implemented boundary.
This is never the case in my model where, conditional on implementing the same boundary,
‘more separating’ allocations are always more wasteful.

6.3 Choosing the optimal boundary

Having pinned down the optimal way to implement a given boundary, we can turn to
searching for the best boundary among all optimally implemented ones. Let g∗ be opti-
mal boundary and a∗, b∗ be lowest participating values associated with it. Suppose that
g∗ is piecewise twice continuously differentiable, that is, g∗ ∈ G. I first show that the opti-
mal boundary extends all the way to the bottom of the type-space, and thus that the whole
supply of both goods is allocated.

Lemma 5. The optimal mechanism allocates the whole supply of both goods, that is, the supply
constraint (S) binds for it.

Equivalently, the result says that almost all types participate, that is, either a∗ = 0 or b∗ = 0.
The intuition behind this is illustrated in Figure 7. Whenever a mechanism excludes some
types, this is because it prices entry into both waitlists. But since the total supply of the
good arriving each period is equal to the mass of arriving agents, we can always lower one of
these prices to zero and allocate the unused supply to agents who would have otherwise not
joined. Graphically, this corresponds to extending the boundary g downwards at an angle
that makes supply constraints hold with equality. The proof is relegated to the appendix; it
tackles the technical difficulties which arise when such a boundary extension is vertical.

15

a

b

g(a
)B

A
∅

Ô⇒

a

b

g(a
)B

A

Figure 7: ‘Extending the boundary’ to allocate the unused supply.

Thus, the optimal mechanism does not price entry into both waitlists. Moreover, we can
restrict our search for the optimal boundary to those that exclude no types. As it turns out,
the optimal boundary among them has to be piecewise linear:

Proposition 3. If the optimal boundary g∗ ∶ [a∗, a∗] →R belongs to G, it is piecewise linear.

To prove the proposition, I set up an optimal control problem of selecting the optimal bound-
ary on a part of a convex/concave region. I show that any boundary with strictly con-
cave/convex parts cannot satisfy the necessary optimality conditions, and thus that the op-
timal boundary has to be piecewise linear. Intuitively, the simple structure of the solution
stems from the normalization of waitlist-specific indirect utilities by their derivatives, U′A
and U′B. This normalization introduces a convexity into the optimal control problem, which
in turn leads to corner solutions.

It remains to show that a piecewise linear boundary g∗ implies that finitely many pay-to-skip
options are offered. Let U∗A and U∗B be the waitlist-specific indirect utilities that implement it.
Then, by Lemma 4, U∗A and U∗B are also piecewise linear. Recall also that UA and UB are the
indirect utilities of agents joining waitlists A and B, respectively. By the envelope theorem,
we then have e−ρ⋅t(a,b) = U′A(a) for all types joining waitlist A, and e−ρ⋅t(a,b) = U′B(a) for all
types joining waitlist B. Since U′A and U′B only take finitely many values, the set of assigned
wait-times is also finite.

7 Conclusion

While payments are often deemed infeasible in contexts like transplant waitlists, programs
allocating affordable housing, daycare slots, and medical procedures frequently involve
some form of monetary transfers. This paper studies how to optimally integrate such trans-
fers into waitlist mechanisms in order to enhance their allocative efficiency. It identifies
a qualitative difference between screening with wait-times and prices: wait-times impose
costs through delaying receipt, which scale with participants’ valuation of the goods, elicit-
ing only relative preferences. Prices, however, enable participants to express absolute val-
uations. Consequently, a designer who is indifferent about transfers between herself and
participants would want to allocate the good through a pure price mechanism. However,
such transfers reduce the recipients’ surplus—this may conflict with the designers’ moti-
vations which led her to resort to using waitlists in the first place. I therefore solve for the

16

optimal price-and-waitlist mechanism under the assumption that such transfers are undesir-
able. Despite considering a broad class of mechanisms allowing for continuously-changing
price schemes, the structure of the optimal mechanism turns out to be much simpler: it in-
volves a single fee for joining the oversubscribed waitlist while allocating the other good for
free, and offers a discrete menu of pay-to-skip options. My model therefore suggests that
limited pricing of waitlist sign-ups and wait reductions can help policymakers better target
goods to high-value recipients while deterring low-value applicants.

8 Appendix: omitted proofs

Throughout, I will use U′−A , U′−B and U′+A , U′+B to denote the left- and right-derivatives of UA
and UB. Since UA, UB are increasing and convex, their one-sided derivatives exist every-
where on (0, 1)with the right derivative being weakly greater than the left. Similarly, when-
ever a > a (b > g(a)), we have U′+A (a) > 0 (U′+B (b) > 0).

8.1 Proof of Lemma 1

(⇒). Fix any indirect utilities UA, UB satisfying the lemma’s conditions. I will show they are
induced by the following mechanism, and that the mechanism is feasible:

e−ρ⋅t(a,b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if (a, b) ≤ (a, b),
U′−A (a), if a > a and UA(a) ≥ UB(b),
U′−B (b), if b > g(a) and UB(b) > UA(a),

x(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∅, if (a, b) ≤ (a, b),
A, if a > a and UA(a) ≥ UB(b),
B, if b > g(a) and UB(b) > UA(a),

p(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if (a, b) ≤ (a, b),
a −UA(a) ⋅ eρ⋅t(a,b), if a > a and UA(a) ≥ UB(b),
b −UB(b) ⋅ eρ⋅t(a,b), if b > g(a) and UB(b) > UA(a).

A standard envelope and convexity argument verifies that no type (a, b)wants to misreport
to (a′, b′) for which x(a′, b′) = x(a, b), that is, conditional on joining the waitlist she was
assigned to, (a, b) prefers her assigned allocation. This in turn implies that UA and UB indeed
satisfy (1) and (2) for this mechanism. Thus, the mechanism indeed induces UA and UB.

It remains to show that the mechanism is feasible. Given the above, verifying that (IC) holds
requires only checking that no (a, b)wants to misreport to (a′, b′) for which x(a′, b′) ≠ x(a, b).
But since UA(a) and UB(b) are the best utilities she can get from either waitlist, this is true
by the construction of x(a, b).

Note also that (IR) must hold as type (0, 0) has indirect utility of 0 and UA and UB are

17

increasing. It therefore remains to check the supply condition (S). However:

∫ 1x(a,b)=A dF(a, b) = ∫ 1UA(a)>UA(b) dF(a, b) ≤ µA,

where the inequality holds by condition 4 (an analogous expression holds for good B). Thus,
the supply constraint (S) must hold.

(⇐). Fix any feasible mechanism (p, t, x). Then UA and UB must be increasing by the stan-
dard single-crossing argument. Since any mechanism allows for non-participation, UA, UB
must also be weakly positive. Furthermore, the envelope formula gives:

for (a, b) ∶ x(a, b) = A, U′A(a) = e−ρ⋅t(a,b),

for (a, b) ∶ x(a, b) = B, U′B(b) = e−ρ⋅t(a,b),

wherever these derivatives exist. Since t(a, b) ≥ 0, it then follows that U′A(a), U′B(0) ∈ [0, 1].
It therefore remains to show that 4. holds. However, UA(a) > UB(b) for almost all agents for
whom x(a, b) = A, so:

∫ 1UA(a)>UA(b) dF(a, b) = ∫ 1x(a,b)=A dF(a, b) ≤ µA,

where the inequality holds by (S). An analogous expression also holds for B.

8.2 Proof of Lemma 2

Consider first types (a, b) < (a, b). By the definition of (a, b), none of them can strictly benefit
from joining either waitlist. Moreover, if some such (a, b)was indifferent about joining wait-
list A or B, then some type (a + ϵ, b + ϵ) < (a, b), for ϵ > 0 small enough, would strictly prefer
to join it. Thus, one of UA(a + ϵ) and UB(b + ϵ) would have to be strictly above zero. Since
UA, UB are increasing by Lemma 1, this contradicts the definition of (a, b). Thus, x(a, b) = ∅
for all (a, b) < (a, b).

Analogously, all types for whom a > a or b > b strictly benefit from joining one of the wait-
lists. Moreover, note that a, b < 1. This is because a positive mass of agents joins either
waitlist and the set of agents for whom a = a or b = b is zero-mass.

Let us now identify the set of types (a, b) ≥ (a, b) who are indifferent between the two wait-
lists, that is, for whom UA(a) = UB(b). This must be the case for (a, b) by construction. Re-
call also that UA, UB are continuous and strictly increasing on [a, 1] and [b, 1], respectively.
Therefore, all indifferent types must lie on a continuous and strictly increasing curve origi-
nating from (a, b). Let g(a) ∶ [a, a] →R describe this curve; notice that either a = 1 or g(a) = 1.
Thus, any type (a, g(a)) > (a, b) is indifferent between her best options in both waitlists but
still strictly prefers to join either. Then, by the standard single-crossing argument, any type
(a′, b) with a′ > a strictly prefers to join waitlist A. Analogously, any type (a, b′) with b′ > b
strictly prefers to join waitlist B.

18

8.3 Proof of Fact 1

Let UA and UB be the waitlist-specific indirect utilities induced by the mechanism. By
Lemma 2, types (a, 0)where a > a join waitlist A and types (0, b)where b > g(a) join waitlist
B. The envelope theorem then gives:

UA(a) = ∫
a

a
e−ρ⋅t(v,0)dv, UB(b) = ∫

b

g(a)
e−ρ⋅t(0,v)dv,

for a ≥ a and b ≥ g(a). Since t(a, b) is piecewise continuously differentiable in both variables,
UA and UB are piecewise twice continuously differentiable.

Now, by Lemma 2, g satisfies the boundary indifference condition:

UA(a) = UB(g(a)) for all a ∈ [a, a]. (I)

UB is strictly increasing on [g(a), g(a)], so it is invertible there:

U−1
B (UA(a)) = g(a) for all a ∈ [a, a].

Since UA and UB were piecewise twice continuously differentiable on [a, a] and [g(a), g(a)],
respectively, g is piecewise twice continuously differentiable on (a, a).

8.4 Proof of Lemma 4

In what follows I prove properties 1, 2 and 4; property 3 is symmetric to property 2. I then
show that the UA, UB optimally implementing g are pinned down up to scaling.

Fact 2 (Property 1). For every a ∈ (a, a), at least one of U′A(a) and U′B(g(a)) exists.

Proof. Suppose there is â ∈ (a, a) such that neither U′A(â) nor U′B(g(â)) exist; I will construct
ŨA, ŨB that implement g and are a strict improvement over UA, UB. Define:

χ ∶=max
⎡⎢⎢⎢⎢⎣

U′−A (â)
U′+A (â)

,
U′−B (g(â))
U′+B (g(â))

⎤⎥⎥⎥⎥⎦
. (4)

Since UA and UB are convex and not differentiable at â and g(â), respectively, we have

χ ∈ (0, 1). Assume without loss that U′−B (g(â))
U′+B (g(â))

≥ U′−A (â)
U′+A (â)

. Consider the proposed improvement:

ŨA(a) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

UA(a), if a < â,

UA(â) + χ ⋅ (UA(a) −UA(â)), if a ≥ â,

ŨB(b) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

UB(b), if b < g(â),
UB(g(â)) + χ ⋅ (UB(b) −UB(g(â))), if b ≥ g(â).

19

I will now verify that ŨA, ŨB implement the boundary g, that they are admissible, and that
they strictly improve upon UA, UB.

Implementing the boundary. It suffices to show that ŨA, ŨB satisfy the boundary indiffer-
ence condition:

ŨA(a) = ŨB(g(a)) for all a ∈ [a, a]. (I’)

We know that UA, UB satisfy (I). Since ŨA, ŨB coincide with UA, UB on [a, â] and [g(a), g(â)],
respectively, (I’) holds there too. For a > â, we need to show:

UA(â) + χ ⋅ (UA(a) −UA(â)) = UB(g(â)) + χ ⋅ (UB(g(a)) −UB(g(â))), (5)

but since UA(â) = UB(g(â)), (5) reduces to UA(a) = UB(g(a)), which holds by (I).

Admissibility. Since UA, UB implement boundary g, the supply condition (S’) must hold for
this boundary, which means that it holds for ŨA, ŨB too. ŨA and ŨB also trivially satisfy
ŨA(0) = ŨB(0) = 0 as they agree with UA, UB in the neighborhood of 0. They also inherit the
convexity of UA, UB on [a, â], (â, 1] and [g(a), g(â)], (g(â), 1], respectively. We must therefore
only check convexity where these intervals meet. First consider ŨB; it suffices to show that:

Ũ′+B (g(â)) ≥ Ũ′−B (g(â)).

Note, however, that χ removed the ‘wedge’ between the right and left derivatives of UB at
g(â), and thus Ũ′−B (g(â)) = U′−B (g(â)) = Ũ′+B (g(â)) = Ũ′B(g(â)).

Let us then consider the convexity of ŨA at â. Similarly, it suffices to show that:

Ũ′+A (â) ≥ Ũ′−A (â).

However:

Ũ′+A (â) = U′+A (â) ⋅
U′−B (g(â))
U′+B (g(â))

≥ U′+A (â) ⋅
U′−A (â)
U′+A (â)

= U′−A (â) = Ũ′−A (â),

where the inequality holds by (4).

Recall also that UA, UB were increasing. Since ŨA, ŨB agree with them on some neighbor-
hood around 0 and are convex, they have to be increasing too. Finally, ŨA, ŨB also inherit
the Lipschitz continuity of UA, UB.

Improvement. I will now show that wherever UA, UB are differentiable, we have:

ŨA(a)
Ũ′A(a)

≥ UA(a)
U′A(a)

,
ŨB(g(a))
Ũ′B(g(a))

≥
UB(g(a))
U′B(g(a))

, (6)

20

where the inequality is strict for a > â. For a ≤ â, (6) holds with equality. For a > â:

ŨA(a)
Ũ′A(a)

=
∫

â
a Ũ′A(v) dv

Ũ′A(a)
+ ∫

a
â Ũ′A(v) dv

Ũ′A(a)

=
∫

â
a U′A(v) dv

χ ⋅U′A(a)
+ ∫

a
â U′A(v) dv

U′A(a)

>
∫

â
a U′A(v) dv

U′A(a)
+ ∫

a
â U′A(v) dv

U′A(a)
,

where the inequality holds since χ ∈ (0, 1) and U′A(a) > 0 for a > a. An analogous inequality
holds for UB. Since UA

U′A
and UB

U′B
appear in the objective from Lemma 3 with strictly positive

weights, ŨA, ŨB are indeed a strict improvement over UA, UB.

Fact 3 (Property 2). On convex regions, U′A(a) ∝ g′(a) and U′B(g(a)) is constant.

Proof. Consider any interval [v, v] ⊂ I for some convex region I such that UB is differentiable
at g(v) and g(v). Define ξ ∶ [g(v), g(v)] →R:

ξ(v) =
U′B(g(v))

U′B(v)
.

Recall that U′B(v) > 0 for v > g(a) and that UB is convex on [g(v), g(v)]. This tells us ξ

is decreasing and takes values in (0, 1]. I will now propose feasible ŨA, ŨB that improve
upon UA, UB. I will show that the improvement is strict whenever the statement of the fact
does not hold for UA and UB. Let ŨA, ŨB ∶ [0, 1] → R be continuous functions such that
ŨA(0) = ŨB(0) = 0 and:

Ũ′A(a) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U′A(a) if a ≤ v,

U′A(a) ⋅ ξ(g(a)) if v < a ≤ v,

U′A(a) ⋅ ξ(g(v)) if a > v,

Ũ′B(b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U′B(b) if b ≤ g(v),
U′B(b) ⋅ ξ(b) if g(v) < b ≤ g(v),
U′B(b) ⋅ ξ(g(v)) if b > g(v).

Since U′A, U′B exist at all but countably many points, these conditions pin down the values
of ŨA and ŨB everywhere. The remainder of the proof consists of showing that ŨA, ŨB
implement the boundary g, that they are admissible, and that they improve upon UA, UB.

Implementing the boundary. It suffices to show that boundary indifference (I) holds for
ŨA, ŨB. Recall that (I) holds for UA, UB. Since ŨA, ŨB agree with UA, UB until v, we have:

ŨA(a) = ŨB(g(a)) for all a ∈ [a, v]. (7)

We thus only need to show (I) for ŨA, ŨB on (v, a]. Note that differentiating (I) for UA, UB
gives the following equation on [v, v], except at countably many points:

U′A(a) = U′B(g(a)) ⋅ g
′(a). (DI)

21

Multiplying both sides of (DI) for UA, UB by ξ(g(a)) gives:

U′A(a) ⋅ ξ(g(a))
´¹¹¹¸¹¹¶

=Ũ′A(a)

= U′B(g(a)) ⋅ ξ(g(a))
´¹¹¹¸¹¹¶

=Ũ′B(g(a))

⋅g′(a),

so (DI) holds for ŨA, ŨB on [v, v], except at countably many points. The argument for (DI)
on (v, a] is analogous. Together, (7) and (DI) for ŨA, ŨB tell us that for any a ∈ [v, a]:

ŨA(v) +∫
a

v
Ũ′A(v)dv = ŨB(g(v)) +∫

a

v
Ũ′B(g(v)) ⋅ g

′(v)dv,

which is equivalent to ŨA(a) = ŨB(g(a)) on that interval.

Admissibility. The proof is analogous to the previous proof of admissibility except for a part
of the argument for convexity. Here ŨA, ŨB inherit convexity on [0, v), (v, 1] and [0, g(v)),
(g(v), 1], respectively. I will show that ŨA, ŨB are convex on (v, v) and (g(v), g(v)) and
verify convexity at the points between these intervals. First, note that ŨB is trivially convex
on (g(v), g(v)) because it is constant there:

Ũ′B(g(a)) = U′B(g(a)) ⋅ ξ(g(a)) = U′(g(v)).

Turning to ŨA, recall that (DI) holds for ŨB and ŨA on (v, v) except at countably many
points. Thus:

Ũ′A(a) = Ũ′B(g(a)) ⋅ g
′(a) = U′B(g(a)) ⋅

U′B(g(v))
U′B(g(a))

⋅ g′(a) = U′B(g(v)) ⋅ g
′(a), (8)

on that interval except at countably many points. Since g is convex on [v, v], g′ is increasing
there. Consequently, U′A(a) is increasing there too and so UA is convex on [v, v]. The re-
mainder of the proof—verifying convexity of ŨA, ŨB at v, v and g(v), g(v), respectively—is
analogous to the previous argument.

Improvement. Suppose the statement of the fact fails on [v, v]. Then U′B(g(v)) cannot be
constant on (v, v): if it were, (DI) would ensure the other part of the fact’s statement. Thus,
there exists some v̂ ∈ (v, v) such that U′B(g(v̂)) < U′B(g(v)). Since UB is convex, we then have:

ξ(g(v))
ξ(g(v))

=
U′+B (g(v))
U′+B (g(v))

> 1 for all v < v̂. (9)

Now, like before, it suffices to show that wherever UA, UB are differentiable, we have:

ŨA(a)
ŨA(a)

≥ UA(a)
UA(a)

,
ŨB(g(a))
Ũ′B(g(a))

≥
UB(g(a))
U′B(g(a))

, (10)

with the inequality holding strictly on a positive-mass set. For a ≤ v, (10) holds with equality.

22

Look at a > v (the argument for a ∈ [v, v] is analogous); there:

ŨA(a)
Ũ′A(a)

=
∫

v
a Ũ′A(v) dv

Ũ′A(a)
+
∫

v
v Ũ′A(v) dv

Ũ′A(a)
+ ∫

a
v Ũ′A(v) dv

Ũ′A(a)

=
∫

v
a ξ(g(v)) ⋅U′A(v) dv

ξ(g(v)) ⋅U′A(a)
+
∫

v
v ξ(g(v)) ⋅U′A(v) dv

ξ(g(v)) ⋅U′A(a)
+ ∫

a
v ξ(g(v)) ⋅U′A(v) dv

ξ(g(v)) ⋅U′A(a)

=
∫

v
a

ξ(g(v))
ξ(g(v)) ⋅U

′
A(v) dv

U′A(a)
+
∫

v
v

ξ(g(v))
ξ(g(v))U

′
A(v) dv

U′A(a)
+ ∫

a
v U′A(v) dv

U′A(a)
.

The final term is identical to the corresponding one for UA, UB. However, by (9), the former
two are strictly larger, implying that (10) holds strictly for a > v̂. The argument for the B-part
of (10) is analogous. Thus, ŨA, ŨB are indeed a strict improvement over UA, UB whenever
the statement of the fact fails on some [v, v] ⊂ I where UB(g(v)) is differentiable at the end-
points. But since UB is convex and I is an open interval, I can be covered arbitrarily well by
such [v, v]. Consequently, the statement of the fact has to hold on its entirety.

Fact 4 (Property 4). Unless a = g(a) = 1, one of U′A(a) and U′B(g(a)) exists. If g(a) < 1, U′B is
constant on (g(a), 1]. If a < 1, U′A is constant on (a, 1].

Proof. Consider the case where a = 1 and g(a) < 1 (the opposite case is analogous). I first
show that if UB not is differentiable on [g(a), 1), it can be improved upon. Suppose U′B is
not differentiable for v̂ ∈ [g(a), 1). Then define:

χ ∶=
U′−B (v̂)
U′+B (v̂)

, ŨB(b) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

UB(b), if b < v̂,

UB(b) + χ ⋅ (UB(b) −UB(v̂)), if b ≥ v̂.

The arguments for why ŨB is feasible and improves upon UB are analogous to those in the
proof on Fact 2. I now show that if UB is not constant on [g(a), 1), we can improve upon it.
Define ξ ∶ (g(a), 1) →R such that:

ξ(v) =
U′−B (g(a))

U′+B (v)
,

and construct a continuous ŨB such that ŨB(0) = 0 and:

Ũ′B(b) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

U′B(b) if b ≤ g(a),
U′B(b) ⋅ ξ(b) if b ∈ (g(a), 1).

The arguments for why ŨB is feasible and improves upon UB are analogous to those in the
proof on Fact 3.

It remains to show that the UA and UB optimally implementing g are unique up to scale. I
first inductively show this holds for them on [a, a] and [g(a), g(a)], respectively. The argu-
ment extends to [a, 1] and [g(a), 1] analogously.

23

Lemma 6. Let UA, UB be waitlist-specific indirect utilities optimally implementing g. Then UA and
UB restricted to [a, a] and [g(a), g(a)], respectively, are unique up to scaling.

Proof. It suffices to show that UA(a) and UB(g(a)) are pinned down (up to scale) on con-
vex/concave regions. Their values at the ends of these intervals will then be pinned down
by continuity.

Let I1 be the first convex/concave region. Suppose without loss that it is convex; then, by
property 2, U′B(g(a)) = k1 and U′A(a) = k1 ⋅ g′(a) on this region for some k1 > 0. Thus, the
optimal UA, UB are pinned down up to scale on the first convex/concave region. I now show
the inductive step. Let In and In+1 be the nth and n+1st convex/concave regions, and an/n+1
be the point between them. It suffices to show that UA(a) and UB(g(a)) for a ∈ In pin down
those values for a ∈ In+1. To prove this, I will use the following fact:

Fact 5. If g′−(an/n+1) ≥ g′+(an/n+1), UA is continuously differentiable in some neighborhood of an/n+1.
If g′−(an/n+1) ≤ g′+(an/n+1), UB is continuously differentiable in some neighborhood of g(an/n+1).

Proof. Fix any v ∈ (a, a). Since g is piecewise twice continuously differentiable, it is contin-
uously differentiable in (v − ϵ, v) and (v, v + ϵ) for a sufficiently small ϵ > 0. By Fact 3, this
implies that U′A (U′B) is also continuous in these neighborhoods. Then if UA (UB) is differen-
tiable at v, it is continuously differentiable in some neighborhood of v.5 It therefore suffices
to show that U′A(an/n+1) and U′B(g(an/n+1)) exist in the respective cases.

By Fact 2, at least one of U′A(an/n+1) and U′B(g(an/n+1)) exist. Recall also that (DI) holds
everywhere on In+1 and In+1 (except at countably many points):

U′A(a) = U′B(g(a)) ⋅ g
′(a). (DI)

Consider three cases.

Case 1: g′−(an/n+1) > g′+(an/n+1). Suppose that U′B(g(an/n+1)) exists. Then U′B has to be con-
tinuous in some neighborhood of g(an/n+1). But since the g′ has a discontinuous downwards
jump at an/n+1 and (DI) holds on both In and In+1, this means that U′A also has a discontinu-
ous downwards jump at an/n+1; contradiction. Thus, U′A(an/n+1) has to exist.

Case 2: g′−(an/n+1) < g′+(an/n+1). Suppose that U′A(an/n+1) exists. Then U′A has to be contin-
uous in some neighborhood of an/n+1. But since the g′ has a discontinuous upwards jump
at an/n+1 and (DI) holds on both In and In+1, this means that U′B also has a discontinuous
downwards jump at an/n+1; contradiction. Thus, U′B(g(an/n+1)) has to exist.

Case 3: g′−(an/n+1) = g′+(an/n+1). In this case, U′A(an/n+1) exists if and only if U′B(g(an/n+1))
does. To see why, suppose U′B(g(an/n+1)) exists. Then U′B has to be continuous in some
neighborhood of g(an/n+1). Since UA and UB are convex and UB is differentiable at g(an/n+1),
(DI) has to then hold at an/n+1, which means that U′A(an/n+1) exists. The reverse direction is
symmetric.

5If a convex function f is continuously differentiable on (a, b) and (b, c) and f ′(b) exists, f is continuously
differentiable on (a, c).

24

Note that we can exploit the symmetry of the setting and assume without loss that In is
a convex region. Then, by Fact 3, U′B(g(a)) = kn and U′A(a) = kn ⋅ g′(a) on this region for
some kn > 0. Consider first the case when In+1 is a convex region. Then we similarly have
U′B(g(a)) = kn+1 and U′A(a) = kn+1 ⋅ g′(a) on this region for kn+1 > 0. If g′−(an/n+1) ≥ g′+(an/n+1),
Fact 5 tells us that U′A exists and is continuous for a in some neighborhood of an/n+1. Thus:

U′A(an/n+1) = kn ⋅ g′−(an/n+1) = kn+1 ⋅ g′+(an/n+1) Ô⇒ kn+1 = kn ⋅
g′−(an/n+1)
g′+(an/n+1)

,

which means kn+1 is pinned down by kn. If g′−(an/n+1) ≤ g′+(an/n+1), Fact 5 tells us that U′B
exists and is continuous in some neighborhood of g(an/n+1). Thus, we have:

U′B(an/n+1) = kn = kn+1,

so kn+1 is pinned down by kn. The case when In+1 is concave is analogous.

8.5 Proof of Lemma 5

I first show that the optimal mechanism allocates a positive mass of both goods. I then show
that it does not exclude any agents.

Fact 6. Under the optimal mechanism, a positive mass of agents joins either waitlist.

Proof. First, I show that a mechanism allocating nothing cannot be optimal. By (IR) such a
mechanism has to give zero utility to everyone, and the value of the objective for it is zero.
Consider then a mechanism which offers good A at price 1− ϵ with a wait-time of zero. All
agents for whom a > 1 − ϵ prefer to take good A at this price and almost all of them get
strictly positive utility from it. All types (a, b) for whom a < 1− ϵ prefer to get nothing. For ϵ

small enough, the mass of agents in the former group is strictly below µA, so this mechanism
is feasible. Moreover, the value of the objective for this mechanism is strictly positive.

Now, consider a mechanism allocating only one of the goods; assume without loss it is good
A. Then, by single-crossing, all agents with a > a∗ receive good A and all agents with a < a∗

receive nothing. Since µA < 1, the set of agents receiving nothing has to have positive mass,
and so a∗ ∈ (0, 1). The value of the objective for this mechanism is then at most:

∫
1

a∗
(a ⋅γ + 1−γ) ⋅ (∫

1

0
f (a, v)dv) da. (11)

I will now propose a superior mechanism that allocates both goods. Consider a mechanism
that offers good A at the price of a∗ with a wait-time of 1 and offers good B at the price 1− ϵ

with a wait-time of δ. Fix ϵ so that:

∫
1

1−ϵ
∫

a∗

0
f (z, v)dz dv = κ,

25

for some κ ∈ (0, µB/2). The waitlist-specific indirect utilities for this mechanism are given by:

UA(a) =max[0, e−ρ(a − a∗)], UB(b) =max[0, e−ρ⋅δ(b − 1+ ϵ)].

Now, for any δ, all agents for whom a is sufficiently close to 0 and b is sufficiently close to 1
will take good B. Similarly, all those for whom a is sufficiently close to 1 and b is sufficiently
close to 0 will take good A. Thus, a positive mass of agents receives each good. We can
therefore apply Lemma 2. The boundary g then satisfies:

e−ρ(a − a∗) = e−ρ⋅δ(g(a) − 1+ ϵ) Ô⇒ g(a) = eρ(δ−1)(a − a∗) + 1− ϵ.

The boundary g thus has a constant slope of eρ(δ−1) which escapes to∞ as δ →∞. It follows
that the value of the objective for this mechanism approaches the following as δ →∞:

∫
1

a∗
(a ⋅γ + 1−γ) ⋅ (∫

1

0
f (a, v)dv) da +∫

1

1−ϵ
(b ⋅γ + 1−γ) ⋅

⎛
⎝∫

a∗

0
f (v, b)dv

⎞
⎠

db.

Note that the latter term is strictly positive and the first one equals to (11). Thus, for δ

sufficiently large, the proposed mechanism dominates any mechanism offering only good
A. Moreover, the mechanism satisfies the supply constraint (S) for sufficiently high δ. This is
because the mass of agents taking good A is smaller than under the single-good mechanism
and the mass of agents taking good B approaches κ.

The above fact ensures that the optimal mechanism has a ‘boundary structure’ and so that
Lemma 2 applies to it. I will now prove that at least one of the lowest participating values
for the optimal mechanism, a∗ and b∗, has to be zero. This will in turn imply that almost all
agents join either waitlist, and so that the mass of allocated goods has to be equal to 1. Thus,
the supply constraint (S) has to hold with equality for both goods.

Fact 7. Under the optimal mechanism, either a∗ = 0 or b∗ = 0.

Proof. Consider any mechanism implementing a boundary g ∈ G with lowest participating
values a, b ∈ (0, 1). I will construct a mechanism that strictly improves upon it. Intuitively,
the new mechanism will allocate the unused supply of the good by ‘extending the boundary’
of the previous one.

For ϵ > 0 small enough, g is twice continuously differentiable on (a, a + ϵ]. Moreover, by the
boundedness and continuity of f , and the fact that the supply condition (S’) held for g, for
ϵ > 0 small enough we have a continuous δ(ϵ) ∈ (0,∞) such that:

∫
a+ϵ

max[0, a−g(a+ϵ)⋅δ(ϵ)]
∫

g(a+ϵ)−δ(ϵ)⋅(a+ϵ−v)

0
f (v, z)dz dv +∫

1

a+ϵ
ΦA(v)dv = µA.

The right-hand-side equals to the probability mass under the curve produced by modifying
g through extending it downwards from g(a + ϵ) at the slope of δ(ϵ). The slope is chosen so
that the area underneath the modified boundary matches µA.

26

a

b

g∗(a)

a + ϵa

b

b̃ϵ

Figure 8: The slope δ(ϵ) of the extension (red) was chosen so that the probability
mass underneath the extended boundary (orange) equals to µA.

For such small enough ϵs, define the extended boundary as follows:

g̃ϵ(a) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

g(a + ϵ) − δ(ϵ) ⋅ (a + ϵ − a) if max [0, a − g(a + ϵ) ⋅ δ(ϵ)] ≤ a < a,

g(a) if a ≥ a + ϵ.

Let ãϵ, b̃ϵ be the lowest participating values associated with the extended boundary. Note
that for any ϵ, either ãϵ = 0 or b̃ϵ = 0, depending on whether the extension crosses the a or the
b axis first. Moreover, since δ(ϵ) is continuous, these lowest participating values will change
continuously with ϵ.

Consider the case where limϵ→0∗ b̃ϵ > 0.6 Then ãϵ = 0 and b̃ϵ = g(a + ϵ) − (a + ϵ) ⋅ δ(ϵ) for all
ϵ > 0 small enough; restrict attention to such ϵs. Now, let UA, UB be the waitlist-specific
indirect utility profiles optimally implementing g and define:

ŨA(a) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a ⋅ δ(ϵ) if a ≤ a + ϵ,

(a + ϵ) ⋅ δ(ϵ) +UA(a) ⋅ c if a > a + ϵ.
, ŨB(b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if b < b̃ϵ,

b − b̃ϵ if b̃ϵ ≤ b ≤ b,

b − b̃ϵ +UB(b) ⋅ c if b > b,

where c ∈ R++. I will show that for any c and ϵ > 0 sufficiently small, ŨA, ŨB are a strict
improvement over UA, UB. I will later show that ŨA, ŨB implement g̃ϵ and that they are
admissible for c large enough.

Improvement. for a ∈ (0, a + ϵ] and b ∈ (b̃ϵ, g(a + ϵ)], we have:

ŨA(a)
Ũ′A(a)

= a,
ŨB(b)
Ũ′B(b)

= b − b̃ϵ.

For any a > a + ϵ and b > g(a + ϵ):

ŨA(a)
Ũ′A(a)

= (a + ϵ) ⋅ δ(ϵ)
c ⋅U′A(a)

+ c ⋅UA(a)
c ⋅U′A(a)

> UA(a)
U′A(a)

, (12)

6The case of limϵ→0∗ ãϵ > 0 is symmetric; the case of limϵ→0∗ ãϵ = limϵ→0∗ b̃ϵ = 0 requires δ(0) ∈ (0,∞) and
can be tackled with a simpler version of the argument to follow in which g̃0 is directly compared to g.

27

ŨB(b)
Ũ′B(b)

=
b − b̃ϵ

c ⋅U′B(b)
+ c ⋅UB(b)

c ⋅U′B(b)
> UB(b)

U′B(b)
. (13)

where the inequalities hold because δ(ϵ) ∈ (0,∞) and b > b̃ϵ.7 Let us now compare the values
of the objective for UA, UB and ŨA, ŨB. For this purpose, define:

V[a1,a2]
A ∶= ∫

a2

a1

⎛
⎝

a ⋅γ + (1−γ) ⋅ UA(a)
U′A(a)

⎞
⎠
⋅ΦA(a)da,

V[b1,b2]
B ∶= ∫

b2

b1

⎛
⎝

b ⋅γ + (1−γ) ⋅ UB(b)
U′B(b)

⎞
⎠
⋅ΦB(b)db,

and let Ṽ[a1,a2]
A , Ṽ[b1,b2]

B be the corresponding expressions for ŨA, ŨB. Notice that the differ-
ence between the objective values for ŨA, ŨB and UA, UB is:

Ṽ[0,a+ϵ]
A + (Ṽ[a+ϵ,1]

A −V[a,1]
A) + Ṽ[b̃ϵ,g(a+ϵ)]

B + (Ṽ[g(a+ϵ),1]
B −V[g(a),1]B) .

We can use (12) and (13) to show that:

lim
ϵ→0+

Ṽ[a+ϵ,1]
A ≥ V[a,1]

A , lim
ϵ→0+

Ṽ[g(a+ϵ),1]
B ≥ V[a,1]

A .

Therefore, to show that ŨA, ŨB produces a strict improvement for some ϵ > 0, it suffices to

argue that Ṽ[0,a+ϵ]
A + Ṽ[b̃ϵ,g(a+ϵ)]

B are bounded away from zero as ϵ → 0+. Indeed:

lim
ϵ→0+

Ṽ[0,a+ϵ]
A ≥ ∫

a

0
(a ⋅γ + (1−γ) ⋅ a) ⋅

⎛
⎝∫

limϵ→0+ b̃ϵ

0
f (a, v)dv

⎞
⎠
> 0.

Implementing the boundary. To show ŨA, ŨB implement g̃ϵ we must show that bound-
ary indifference (I) holds for them. It holds on [a + ϵ, 1] since ŨA(a), ŨB(g(a)) agree with
UA(a), UB(g(a)) there. It thus remains to show it on [0, a + ϵ). There:

ŨA(a) = ŨB(g(a)) ⇔ a ⋅ δ(ϵ) = g(a + ϵ) − (a + ϵ − a) ⋅ δ(ϵ) − b̃ϵ,

which holds since b̃ϵ = g(a + ϵ) − (a + ϵ) ⋅ δ(ϵ).

Admissibility. For any c, ŨA and ŨB are Lipschitz continuous. They also satisfy the first
part of the supply constraint (S’) which holds with equality for g̃ϵ by construction. Since
µB = 1 − µA and no type is excluded, the second part of the supply condition must hold
with equality too. We must therefore only verify that for any sufficiently small ϵ > 0, there
exists c ∈ R++ such that ŨA, ŨB are increasing and convex. As noted before, we focus on ϵ

sufficiently small that δ(ϵ) ∈ (0,∞) and the case where ã = 0.

Note that ŨA, ŨB are increasing and convex on [0, a + ϵ], (a + ϵ, 1] and [0, g(a + ϵ)], (g(a +
ϵ), 1], respectively. It therefore suffices to check the point where these intervals meet. Since

7Lemma 4 ensures that U′A(a + ϵ), U′B(g(a + ϵ)) exist for ϵ > 0 sufficiently small and are strictly positive.

28

U′A(a + ϵ), U′B(g(a + ϵ)) > 0, we can select c > 0 sufficiently large that:

Ũ′−A (a + ϵ) = δ(ϵ) < c ⋅U′A(a + ϵ), and Ũ′−B (g(a + ϵ)) = 1 < c ⋅U′B(g(a + ϵ)),

which guarantees ŨA, ŨB to be convex and increasing on [0, 1].

9 Appendix: proof of Proposition 3

Proposition 2 gives the result for the case of non-wasteful payments, γ = 1. I will therefore
consider the case of γ < 1. I begin my showing that g∗ has to solve a particular optimal
control problem on some subsets of its domain.

9.1 Optimal control problem

Let I be a convex region of g∗ and consider any [v, v] ⊂ I such that g∗ differentiable in [v, v].
I will show that g∗ restricted to [v, v]must be the optimal g in the following control problem:

Problem 1. Choose the control function u ∶ [v, v] → R+ and state functions g, y, q ∶ [v, v] → R to
maximize:

∫
v

v
J(v, g(v), y(v))dv, (14)

where:

J(v, g(v), y(v)) ∶= (v ⋅γ + (1−γ) ⋅
c1 + g(v)

y(v)
) ⋅ (∫

g(v)

0
f (v, z)dz)

+ (g(v) + (1−γ) ⋅ c2) ⋅ y(v) ⋅ (∫
v

0
f (z, g(v))dz) ,

where c1 + g∗(v) ≥ 0, subject to the following laws of motion:

g′(v) = y(v), y′(v) = u(v), q′(v) = ∫
g(v)

0
f (v, z)dz,

and the following end-point constraints:

g(v) = g∗(v), g(v) = g∗(v), (15)

y(v) = g∗′+ (v), y(v) = g∗′− (v), (16)

q(v) = 0, q(v) = ∫
v

v
∫

g∗(v)

0
f (v, z) dz dv. (17)

The states g and y correspond to the boundary and its derivative, the control u corresponds
to its second derivative, and q is introduced to capture the supply condition. The corre-
sponding optimal control problem for concave regions is analogous.

Note that g∗ restricted to [v, v] is admissible in Problem 1. The proof thus consists of two
steps. First, I show that for any g that is admissible in Problem 1, the following boundary is

29

implementable in the original problem:

g̃(v) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

g(v) if v ∈ [v, v],
g∗(v) elsewhere.

Second, I show that the value of the objective from optimally implementing this boundary
coincides with (14) up to a constant. Together, these two points imply that g∗ on [v, v] indeed
has to be the optimal g in 1, as otherwise some superior boundary g̃ would exist.

Both steps of the proof rely on the following corollary which follows from a construction
analogous to those in the proof of Lemma 4.

Corollary 2. Let g1, g2 ∶ [a, a] → R be boundaries that satisfy the supply condition (S’) and belong
to G. Suppose I is a convex region for both g1 and g2 and let [v, v] be its subset. Suppose further that
g1 and g2 agree everywhere except (v, v), that is:

g1(a) = g2(a) for all a /∈ (v, v).

Then if there exist UA,1, UB,1 optimally implementing g1, there also exist UA,2, UB,2 optimally im-
plementing g2. Moreover, UA,1 and UA,2 agree everywhere except (v, v) and UB,1 and UB,2 agree
everywhere except (g1(v), g1(v)).

Intuitively, Corollary 2 says that perturbing a boundary inside an interval where it is convex
does not affect the indirect utilities optimally implementing it outside this interval.

Consider any g ∶ [v, v] →R that is admissible in Problem 1 and let g̃ be its associated bound-
ary. I will show Corollary 2 applies to g̃. This requires proving that:

1. g∗ and g̃ agree outside of (v, v),

2. g̃ is a boundary,

3. g̃ ∈ G, that is, it is piecewise twice continuously differentiable,

4. g∗ and g̃ are convex on I ,

5. the supply condition (S’) holds for g̃.

1. holds by the definition of g̃ and (15). Since the values of g∗ at a and a are fixed, 2. requires
showing that g̃ is continuous and strictly increasing. Note that Problem 1 does not allow for
jumps in the state g, so it must be continuous on (v, v). It is also continuous with g∗ at the
end-points of this interval by (15). Now, note that y(v) and the control u have to be positive;
this ensures that any g is strictly increasing. 3. holds because the optimal control problem
only admits absolutely continuous y. To see why 4. is satisfied, note first that g is convex
on [v, v] because the control, which corresponds to its second derivative, is positive on this
interval. Moreover, (16) ensures that the ‘pasting’ of g and g∗ at the ends of that interval
preserve convexity on I . Finally, to see why 5. holds, note that by Lemma 5, the supply

30

condition (S’) has to hold with equality for the optimal boundary g∗. Thus, we can without
loss replace (S’) with:

∫
1

a
ΦA(v)dv = µA. (SE)

Since g∗ is implementable, (SE) has to hold for it; consequently, (17) ensures that it holds for
g̃ too.

Thus, Corollary 2 applies to g∗ and g̃. Define U∗A, U∗B as the indirect utilities optimally im-
plementing g∗. The corollary then tells us there exist some UA, UB that optimally implement
g̃ and agree with U∗A, U∗B everywhere outside (v, v) and (g∗(v), g∗(v)), respectively.

Consequently, the objective depends on the state g only through two terms:

VA[g] ∶= ∫
v

v

⎛
⎝

a ⋅γ + (1−γ) ⋅ UA(a)
U′A(a)

⎞
⎠
⋅ (∫

g(a)

0
f (a, z)dz) da,

VB[g] ∶= ∫
g∗(v)

g∗(v)

⎛
⎝

b ⋅γ + (1−γ) ⋅ UB(b)
U′B(b)

⎞
⎠
⋅
⎛
⎝∫

g−1
(b)

0
f (z, b)dz

⎞
⎠

db.

Let us now pin down how UB(b) depends on g̃ for b ∈ (g∗(v), g∗(v)). Note that (v, v) is a
subset of a convex region, so by Lemma 4 we know that U′B(b) is constant on (g∗(v), g∗(v))
and thus equals to U∗′+B (g∗(v)) on it. Since UB(g∗(v)) = U∗B(g∗(v)), this means that UB(b) =
U∗B(b) for b in that interval. Hence, for any such b:

UB(b)
U′B(b)

=
U∗B(g∗(v)) +U∗′+B (b)(b − g∗(v))

U∗′+B (b)
= c2 + b,

where c2 =
U∗B(g(v))
U∗′+B (b) − g∗(v). Substituting into VB[g] yields:

VB[g] = ∫
g(v)

g(v)
(b ⋅γ + (1−γ) ⋅ (c2 + b)) ⋅

⎛
⎝∫

g−1
(v)

0
f (z, b)dz

⎞
⎠

db,

= ∫
g∗(v)

g∗(v)
(b + (1−γ) ⋅ c2) ⋅ (b ⋅γ + (1−γ) ⋅ (c2 + b)) ⋅

⎛
⎝∫

g−1
(v)

0
f (z, b)dz

⎞
⎠

db.

By changing variable from b to g(v)we obtain:

VB[g] = ∫
v

v
(g(v) + (1−γ) ⋅ c2) g′(v) ⋅ (∫

v

0
f (z, g(v))dz) dv.

Let us now turn to the dependence of UA(a) on g for a ∈ (v, v). We know it satisfies (DI) at
all but countably many points:

U′A(a) = U′B(g(a)) ⋅ g
′(a) = U∗′+B (g(v)) ⋅ g

′(a).

31

We therefore have:

UA(a) = U∗A(v) +∫
a

v
U′A(v) dv

= U∗A(v) +∫
a

v
U∗′+B (g

∗(v)) ⋅ g′(v) dv

= U∗A(v) +U∗′+B (g
∗(v)) ⋅ (g(a) − g∗(v)).

Moreover:
UA(a)
U′A(a)

=
U∗A(v) +U∗′+B (g∗(v)) ⋅ (g(a) − g∗(v))

U∗′+B (g∗(v)) ⋅ g′(a)
=

c1 + g(a)
g′(a)

,

where c1 =
U∗A(v)

U∗′+B (g∗(v)) − g∗(v) ≥ −g∗(v). Substituting into VA[g] yields:

VA[g] = ∫
v

v
(a ⋅γ + (1−γ) ⋅

c1 + g(a)
g′(a)

) ⋅ (∫
g(a)

0
f (a, z)dz) da.

This completes the proof.

9.2 Strict convexity/concavity of boundary

I now use the optimal control problem introduced above to show that the second derivative
of the optimal boundary, g∗′′(v), is zero wherever it exists. Since the optimal boundary g∗

was piece-wise twice continuously differentiable, this will imply that it is piecewise linear.

Suppose towards a contradiction that g∗′′(v̂) > 0 for some v̂ (the case where g∗′′(v̂) < 0 is
analogous). Since g′′ is piecewise continuous, there must be some interval [v, v] around
v̂ such that g∗′′(v) > 0 on it. Consider therefore Problem 1 for that interval. As shown,
g∗ restricted to [v, v] must be the optimal g for that problem. Let (g∗, y∗, q∗, u∗, ξ, ϕ, η) be
optimal the collection of states, controls and costates associated with g∗. By the Maximum
principle, u∗(v) > 0 must then maximize the following Hamiltonian for all v ∈ (v, v):

H = (v ⋅γ + (1−γ) ⋅
c1 + g∗(v)

y∗(v)
) ⋅
⎛
⎝∫

g∗(v)

0
f (v, z) dz

⎞
⎠

+ (g∗(v) + (1−γ) ⋅ c2) ⋅ y∗(v) ⋅ (∫
v

0
f (z, g∗(v)) dz)

+ ξ(v) ⋅ y∗(v) + ϕ(v) ⋅ u + η(v) ⋅
⎛
⎝∫

g∗(v)

0
f (v, z) dz

⎞
⎠

.

Note that the Hamiltonian depends on the control linearly and so the optimal control can be
interior only if ϕ(v) = 0 on (v, v). Since the control is singular on this interval, the optimal
collection must satisfy the Kelley condition, which is a necessary condition for maximization
(Robbins, 1967). It requires the following inequality to hold at the optimal collection:

∂

∂u
(d2

dv2Hu) ≥ 0. (18)

32

I will show the condition fails at the conjectured optimum. Notice that:

d2

dv2Hu = ϕ′′(v).

Moreover, the Maximum Principle tells us that at the optimal state vector:

ϕ′(v) = −Hy =
A(v)

y∗(v)2
− B(v) − ξ(v),

where:

A(v) ∶= (1−γ)(c1 + g∗(v))
⎛
⎝∫

g∗(v)

0
f (v, z) dz

⎞
⎠

,

B(v) ∶= (g∗(v) + (1−γ) ⋅ c2) ⋅ (∫
v

0
f (z, g∗(v)) dz) .

Consequently:

ϕ′′(v) = A′(v)
y∗(v)2

− 2
A(v)

y∗(v)3
u − B′(v) − ξ′(v).

Direct computation confirms that A′(v) and B′(v) do not depend on u. Moreover, the Maxi-
mum Principle also tells us that at the optimal state vector:

ξ′(v) = −Hg

= − 1−γ

y∗(v)
⋅
⎛
⎝∫

g∗(v)

0
f (v, z) dz

⎞
⎠
−(

c1 + g∗(v)
y∗(v)

+ η(v)) ⋅ f (v, g∗(v))

− y∗(v) ⋅ (∫
v

0
f (z, g∗(v)) dz) − (g∗(v) + (1−γ)c2) ⋅ y∗(v) ⋅ (∫

v

0
f2(z, g∗(v)) dz) ,

which does not depend on u either. Thus:

∂

∂u
(d2

dv2Hu) =
∂

∂u
ϕ′′(v) = −2

A(v)
y∗(v)3

< 0,

which contradicts (18). To see why the last inequality holds, recall that g∗ was strictly in-
creasing on (v, v), so y∗(v) = g∗′(v) > 0 and g∗(v) > g∗(v). Recall also that c1 + g∗(v) ≥ 0, so
c1 + g∗(v) > 0, giving A(v) > 0.

References

ARNOSTI, N. AND P. SHI (2020): “Design of lotteries and wait-lists for affordable housing
allocation,” Management Science, 66, 2291–2307.

ASHLAGI, I., F. MONACHOU, AND A. NIKZAD (2024): “Optimal Allocation via Waitlists:
Simplicity Through Information Design,” The Review of Economic Studies, rdae013.

BARZEL, Y. (1974): “A theory of rationing by waiting,” The Journal of Law and Economics, 17,
73–95.

33

BESLEY, T. AND S. COATE (1991): “Public Provision of Private Goods and the Redistribution
of Income,” The American Economic Review, 81, 979–984.

BLOCH, F. AND D. CANTALA (2017): “Dynamic Assignment of Objects to Queuing Agents,”
American Economic Journal: Microeconomics, 9, 88–122.

BUDISH, E. (2011): “The combinatorial assignment problem: Approximate competitive
equilibrium from equal incomes,” Journal of Political Economy, 119, 1061–1103.

CONDORELLI, D. (2012): “What money can’t buy: Efficient mechanism design with costly
signals,” Games and Economic Behavior, 75, 613–624.

HARTLINE, J. D. AND T. ROUGHGARDEN (2008): “Optimal mechanism design and money
burning,” in Proceedings of the fortieth annual ACM symposium on Theory of computing, 75–84.

HYLLAND, A. AND R. ZECKHAUSER (1979): “The efficient allocation of individuals to posi-
tions,” Journal of Political Economy, 87, 293–314.

LESHNO, J. D. (2022): “Dynamic matching in overloaded waiting lists,” American Economic
Review, 112, 3876–3910.

MILGROM, P. AND I. SEGAL (2002): “Envelope theorems for arbitrary choice sets,” Econo-
metrica, 70, 583–601.

MYERSON, R. B. (1981): “Optimal Auction Design,” Mathematics of Operations Research, 6,
58–73.

ROBBINS, H. M. (1967): “A generalized Legendre-Clebsch condition for the singular cases
of optimal control,” IBM Journal of Research and Development, 11, 361–372.

YANG, F. (2021): “Costly multidimensional screening,” arXiv preprint arXiv:2109.00487.

34

	Introduction
	Model
	Feasible mechanisms
	Role of payments
	Mechanisms without money
	Non-wasteful payments (=1)
	Trade-off: efficient assignment vs. minimizing payments

	Optimal mechanism
	Proof of Theorem 1
	Objective in terms of indirect utilities
	Optimally implementing a fixed boundary
	Choosing the optimal boundary

	Conclusion
	Appendix: omitted proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Fact 1
	Proof of Lemma 4
	Proof of Lemma 5

	Appendix: proof of Proposition 3
	Optimal control problem
	Strict convexity/concavity of boundary

