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Motivation: a!ordable housing

- Applicants have heterogeneous preferences over location and quality

- More desirable units come with longer wait times and higher rents

- When choosing which project to apply for, applicants trade o!:

1. Preferences for di!erent locations/apartments

2. Wait times

3. Rents

- While implementations di!er, this core trade-o! present across programs
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Question

- Question: How should we screen with wait times and prices when allocating
heterogeneous goods?

- I study a stylized model with two goods and two screening instruments

- Main result: The designer should only use pricing to screen, even if she has no
value for revenue
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Literature

- Wasteful screening (Hartline and Roughgarden, 2008; Yang, 2021)

- This paper: combines two wasteful screening instruments

- Wait times ‘acting as prices’ (Barzel, 1974; Leshno, 2022; Ashlagi et al., 2024)

- This paper: shows wait times and prices screen on di!erent things

- Mechanisms without money (Hylland and Zeckhauser, 1979; Budish, 2011)

- This paper: money allowed but transfers are wasteful
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Model
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Goods

- The designer distributes two kinds of goods, A and B,

- There is µA > 0 of good A and µB > 0 of good B

- Agents’ values for A and B given by two-dimensional types (a, b) → [0, 1]2

- Values a and b distributed independently on [0, 1], according to G and H

- G, H have densities g, h, full-support, G(v)
g(v) , H(v)

h(v) strictly increasing
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Agents

- The designer chooses a menu of wait times and payments for each of the goods

- Each agent chooses which good she wants (if any) . . .

- . . . and then chooses a payment and wait time option from this good’s menu

- Type-(a, b) who gets a good, pays p and discounts it by x due to waiting gets utility:

x · a ↑ p if she gets A,
x · b ↑ p if she gets B.

- NB: waiting delays receipt ↓ waiting cost multiplies value for the good!
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Allocations
- The designer chooses allocations of:

1. Payments p : [0, 1]2 ↔ R+

2. Discounting x : [0, 1]2 ↔ [0, 1]

3. Goods: y : [0, 1]2 ↔ {A, B,⊋}

- Subject to IC, IR and supply constraints:

for every (a, b), (a→, b
→) → [0, 1]2, U [a, b, (p, x, y)(a, b)] ↗ U [a, b, (p, x, y)(a→, b

→)] (IC)

for every (a, b) → [0, 1]2, U [a, b, (p, x, y)(a, b)] ↗ 0 (IR)

∫
1gets A dF (a, b) ↘ µA,

∫
1gets B dF (a, b) ↘ µB (S)
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Designer

- She maximizes total agent welfare:

W =
∫

U [a, b, (p, x, y)(a, b)] dF (a, b)

- NB: the designer puts no value on revenue!

- E.g. social programs whose participants are poorer than the average taxpayer

- Extreme assumption, but it works against the main result!

- Technical restriction: allowing only piecewise di!-able discounting allocations x(a, b)
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Feasible mechanisms
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Who gets which good?

- When neither good is free, some types do
not participate (⊋)

- The rest pick their favourite (payment,
wait time) option for one of the goods

- Types on the boundary z indi!erent
between their best options for both goods

- Types below z pick some option for A,
types above z pick some option for B

z(
a)

B

A
⊋

a

b
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Main result
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Main result

Theorem 1

The optimal mechanism allocates both goods without waiting. It
posts a separate price for each good. The prices are chosen so that
the whole supply of both goods is allocated.

a

b

z(
a)

B

A⊋
a

b
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Main result

Theorem 1

The optimal mechanism allocates both goods without waiting. It
posts a separate price for each good. The prices are chosen so that
the whole supply of both goods is allocated.

- I will give two complementary intuitions:

- Intuition 1: explains why the result holds in a 1-dimensional case

- Intuition 2: looks at what multidimensionality adds to the problem
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Intuition 1: 1D case
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1D case

- Unit mass of agents with same b > 0 (su"ciently small) and a ≃ G on [0, 1]

- Unlimited supply of good B, supply µA of good A

Proposition 1

The optimal mechanism in the 1D model o!ers both goods without
waiting. It o!ers good B for free and posts a price for good A.
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1D case

- Every feasible (deterministic) 1D mechanism allocates A to types above some a

- We can enforce this cuto! by asking recipients of A to pay or to wait

- We have U(a) = b +
∫

a

a
x(v)dv. . .

a

U(a)

a

b
Receive A

Wait times

a

U(a)

a

b
Receive A

Payments

- . . . so payments leave more rents to inframarginal takers of A!
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1D case

- Wait time and payments mechanisms equally good for the cuto! type. . .

- . . . but wait times more costly to inframarginal types. . .

- . . . while payments ‘equally costly’ to everyone

- However, in 1D, the A-good always goes to an upper interval of types

- In 2D, combining wait times and payments can change sorting into goods!

- Intuition 2 explains why payments sort agents better
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Intuition 2: 2D case

Only wait times vs. only payments
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Only wait times

- Suppose µA + µB = 1 and both goods
are given for free

- Then everyone joins and wait-times
‘clear the market’

- Type (a, b) chooses A if:

xA · a > xB · b

- Ratio a

b
determines choice of good a

b

z(a
)

B

A
a

b
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Only payments

- Suppose µA + µB = 1

- We can achieve the e"cient allocation
by pricing the overdemanded good!

- A-goods go to those with highest a → b

a

b

z(
a)B

A
a

b
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Using wait times vs. only payments

- With wait times, agents sort based on relative values

- Payments let us screen on agents’ absolute values

a

b

z(a
)

B

A
a

b

Only wait times

a

b

z(
a)B

A
a

b

Only payments

- Absolute values are what matters, so payments sort agents better!
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Proof intuition
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Indirect utilities

- Agents in the A-region choose some (wait
time, payment) options for good A. . .

- . . . and agents in the B-region choose one
for good B

- Their option choice does not depend on
their value for the other good!

- Therefore, we can write indirect utilities
cond. on getting goods A and B as:

UA(a), UB(b)
a

b

z(
a)

B

A
⊋

a

b
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Indirect utilities

- UA(a), UB(b) are the indirect utilities
cond. on joining goods A and B

- We thus have two 1D screening problems
(one for each good). . .

- . . . connected by the boundary types’
indi!erence conditions:

UA(a2) = UB(z(a2)) a

b

z(
a)

B

A
⊋

(a2, b2)

a

b
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Proof strategy

1. Fix any boundary z and find the mechanism that optimally implements it

2. Find the optimal z among optimally implemented boundaries
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Optimally implementing a given boundary

- Fix a boundary z and recall the following holds along it:

UA(a) = UB(z(a)) ↓ xA(a) = xB(z(a)) · z
→(a)

- We have UA(a) =
∫

a

a
xA(v)dv, so we want xA as large as possible

- Finding the best mechanism implementing z ⇐ finding the p.w. largest
non-decreasing xA, xB : [0, 1] ↔ [0, 1] satisfying:

xA(a) = xB(z(a)) · z
→(a)
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Picking the optimal boundary

- Fix some xA(a1) and suppose z is convex
below it. Then:

z
→(a) =

xA(a)
xB(z(a))

⇒

- So xA(a) must be strictly below xA(a1) for
a < a1. . .

- Best we can do is to push both xA and xB

up until monotonicity binds for xB

z(a
)

(a1, b1)

xA(a1)
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How flat can we make UA and UB?

- Thus, in the optimal mechanism. . .

- on convex regions we have:

xB(z(a)) = const, xA(a) ⇑ z
→(a).

- and on concave regions we have:

xA(a) = const, xB(z(a)) ⇑ 1/z
→(a). a

b

xB

constant

xA constant

a

b

30 / 36



Picking the optimal boundary

- These conditions tell us how to optimally
implement each boundary z

- Now, look at any convex region of z

- Perturb z to find its optimal shape on it

z(
a)B

A
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Objective in terms of UA and UB, and z

- Recall the objective is:
∫

U [a, b, (p, t, y)(a, b)] dF (a, b).

- We can use the boundary structure to write it as:
∫ 1

a

∫
z(min[a,a])

0
f(a, v)dv · UA(a) da

︸ ︷︷ ︸
Get A

+
∫ 1

b

∫
z

→1(min[b,b])

0
f(v, b)dv · UB(b) db.

︸ ︷︷ ︸
Get B

- We can similarly rewrite supply constraints in terms of z

32 / 36



Objective in terms of UA and UB, and z

∫ 1

a

∫
z(min[a,a])

0
f(a, v)dv · UA(a) da +

∫ 1

b

∫
z

→1(min[b,b])

0
f(v, b)dv · UB(b) db.

- Restricting to some region [v, v], changing variables and integrating by parts gives:

UA(v)G(v)H(z(v)) ↑ UA(v)G(v)H(z(v)) ↑
∫

v

v

xA(a)︸ ︷︷ ︸
constant

G(a)H(z(a)) da.

- Objective depends only on z, so we can apply optimal control

- Turns out the optimal z has to be linear on every such region!
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Conclusions
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Conclusions

- Many housing programs make participants trade o!:

prefs. for goods vs. wait time vs. payments

- These screen di!erently! Wait times ↔ relative, payments ↔ absolute values

- My stylized model shows wait-times have bad screening properties

- While some wait time is often inevitable in reality. . .

- . . . we should be worried about large imbalances in wait times!

- In those cases, we should adjust prices!
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Thank you!
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