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Abstract

A designer allocates a stock of two kinds of goods to agents with heterogeneous prefer-
ences, aiming to maximize the agents’ welfare. She can incentivize agents to choose goods in
a socially optimal manner using two wasteful screening instruments: charging them money
for the goods and requiring them to wait to receive them. I show that the optimal mecha-
nism never requires agents to wait for either good and ensures that supply constraints hold
by charging market-clearing prices.

1 Introduction

Affordable housing programs often offer a wide variety of units. In Amsterdam, public housing
stock includes remote tower blocks as well as apartments in central, upscale neighbourhoods
(Van Dijk, 2019). Among them, larger, better maintained, or more centrally located develop-
ments are more desired, and households wait much longer to get them. Similarly, wait times
are higher for units whose rents are subsidized more heavily relative to market rates (Van Om-
meren and Van der Vlist, 2016). Consequently, households participating in Amsterdam’s hous-
ing program face a trade-off between expected wait times, rents, and their values for different
locations or projects. While affordable housing programs around the world differ in terms of
the exact mechanism or its implementation, the same core trade-off is often present. A de-
signer interested in improving such programs must therefore understand how differences in
wait times and rents make agents self-select into the available housing developments.

Similarly, healthcare systems face the challenge of allocating a limited supply of different treat-
ments to patients with conditions that vary in severity and progression. To make these as-
signments more efficient, patients requesting scarce or costly therapies are often mandated to

*I am grateful to Joey Feffer, Federico Llarena, Sam Wycherley, Benjamin Brooks, Rafael Berriel, Andrzej Skrzy-
pacz, Piotr Dworczak, Jacob Leshno, Michael Ostrovsky, Ilya Segal and Rebecca Diamond for their helpful com-
ments and suggestions.
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secure referrals or demonstrate that less invasive methods have been attempted previously. In-
deed, the World Health Organization (2023) states that the referral system is “aiming to ensure
patient access to specialist health care when needed, while maintaining resource efficiency”.
While referral requirements may reduce the burden on the healthcare system by ensuring that
only patients with a high need pursue scarce treatment options, they can also delay the ther-
apy itself. For instance, the American Physical Therapy Association claims that “direct access
restrictions cause unnecessary delays for people who would benefit from treatment by a PT.”1

I study the optimal design of the trade-off between values for different goods, wait times and
payments by considering a stylized model where a welfarist designer chooses how to allocate
two scarce goods amongst a mass of agents. Since supply is limited, the designer wants to
encourage agents to select goods in a socially efficient manner; she can incentivize agents to
do so by making those who receive certain goods wait or pay for them. Importantly, however,
the designer cares only about the welfare of agents and does not want to extract revenue from
them. Thus, both wait times and payments are essentially wasteful screening instruments. I
find that even in this case, screening agents using only payments dominates any mechanism
screening with wait times or combining the two devices. In optimum, all goods are allocated
immediately upon arrival and the designer ensures supply constraints hold by charging prices
for overdemanded goods.

The result can be understood through two complementary intuitions. First, ensuring that sup-
ply constraints hold using wait times disproportionately hurts high-value agents, while doing
so with payments is equally costly to everyone. I illustrate this in a simple single-dimensional
example where a unit mass of agents can either choose an abundant outside option or a scarce
good. While the utilities of the marginal agent choosing the scarce good will be the same when
either payments or wait times are used, the latter instrument deprives inframarginal takers of
the scarce good of rents associated with their high values. By contrast, pricing the good pre-
serves such rents, leading to higher welfare.

However, this intuition does not fully extend to the case of multiple goods. Indeed, in a mul-
tidimensional setting, the designer can use combinations of wait times and payments to make
agents ‘sort’ into goods in rich ways, with some patterns of sorting requiring the use of wait
times. A second intuition notices that the two instruments also differ qualitatively in what they
screen on, and that prices always sort agents in a better way than do wait times—since the
costs of waiting are associated with delaying the good’s receipt, they can only extract infor-
mation about agents’ relative values for the offered goods, but not about the intensity of their
need for either good. Payments, on the other hand, elicit how much agents value the distributed
goods, allowing the designer to implement more efficient allocations.

From a technical perspective, my model can be seen as combining a wasteful screening device
that enters an agent’s utility additively with one that multiplies the agent’s type. While wait times
are the most common ‘multiplicative’ screening device, one could interpret it as the designer

1https://www.apta.org/advocacy/issues/direct-access-advocacy
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degrading the good’s quality à la Deneckere and McAfee (1996). In this case, the main result
tells us that it is better to keep the quality of both goods high and price it in, rather than trying
to entice more agents to choose one type of good by offering a cheaper and worse variety of it.
Relatedly, the designer could be setting a multi-part tariff on a good which is itself scarce, but
whose use does not generate substantial costs. She could then still require payments for usage
in order to encourage agents to select one good over another.

My model is also an instance of a tractable multidimensional screening problem. By restricting
attention to deterministic mechanisms, I am able to characterize the design of price and wait
time menus for the two goods as interconnected single-dimensional screening problems. The
interaction between them is summarized by a boundary in the type space that separates the sets
of types who choose each good. The multidimensional problem can then be broken up into two
stages: first, determining the optimal way to implement a given boundary, and second, solving
an optimal control problem to select the optimal boundary among all implementable ones.

This paper relates closely to the work on costly screening and money-burning (e.g. Hartline
and Roughgarden (2008), Condorelli (2012)). However, the literature focuses on cases where
the designer only has access to a single wasteful screening device. An exception is Yang (2021)
who considers a monopolist with both wasteful and non-wasteful instruments and character-
izes cases where the wasteful one should not be used. In contrast, this paper considers a de-
signer using two wasteful screening instruments. My comparison of screening devices—wait
times and payments—also relates to the work of Akbarpour et al. (2023) who study when one
screening device dominates another for a planner aiming to maximize a social welfare func-
tion. Unlike them, I allow the designer to combine instruments and show that screening with
payments alone dominates any mechanism using both devices. Finally, my paper relates to a
literature on waitlist design. While no paper has studied combining waitlists with payments in
settings with heterogeneous goods, a substantial literature examines designing such waitlists
without transfers. Ashlagi et al. (2024) demonstrate that allocative efficiency can be improved
by coarsening agents’ information about the qualities of allocated goods. Arnosti and Shi (2020)
compare common non-monetary mechanisms in terms of targeting and match efficiency. Barzel
(1974), Bloch and Cantala (2017), and Leshno (2022) observe that in environments with homoge-
neous waiting costs, wait times may ‘act as prices’, screening for agents with higher valuations.
I refine this intuition by showing that the screening properties of wait times are impeded when
the cost of waiting stems from delayed receipt—in those cases, wait times can only screen on
agents’ relative values for the offered goods.

2 Model

A designer distributes two types of goods, A and B. Their supplies are equal to µA, µB > 0,
with µA + µB ≤ 1. There is a unit mass of agents whose values for the two goods are given by a
and b, respectively, with (a, b) ∈ [0, 1]2. Agents’ values are distributed according to F with the
following properties:
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Assumption 1. F has a continuous, full support pdf f on [0, 1]2. Moreover, agents’ values for the two
goods are independent, so there exist continuous, full support pdfs g, h on [0, 1] such that:

f (a, b) = g(a) ⋅ h(b).

Let G, H be their cdfs. I assume that their anti-hazard rates, G(v)
g(v) , H(v)

h(v) , are strictly increasing.

The designer chooses a menu of wait times and payments for each of the goods. That is, an
agent can choose which good she wants to get and then choose a wait time and payment option
from the relevant good’s menu. She can also not participate, which gives her utility 0. When a
type-(a, b) agent participates and receives good y, her utility is:

x ⋅ a − p if y = A,

x ⋅ b − p if y = B,

where p ∈ R+ is the price the agent pays and x ∈ [0, 1] is her discounting due to having had
to wait for the good. The designer chooses the menus to maximize the total welfare of agents.
Thus, by the Revelation Principle, we can reduce her problem to picking allocation rules for
payments, p ∶ [0, 1]2 → R+, discounting, x ∶ [0, 1]2 → [0, 1], and goods, y ∶ [0, 1]2 → {∅, A, B}, to
maximize:

W = ∫ U[a, b, (p, t, y)(a, b)]dF(a, b), (W)

subject to (IC) and (IR) constraints, and the supply constraint (S):

for all (a, b), (a′, b′) ∈ [0, 1]2, U[a, b, (p, t, y)(a, b)] ≥ U[a, b, (p, t, y)(a′, b′)], (IC)

for all (a, b) ∈ [0, 1]2, U[a, b, (p, t, y)(a, b)] ≥ 0, (IR)

∫ 1y(a,b)=A dF(a, b) ≤ µA, ∫ 1y(a,b)=B dF(a, b) ≤ µB. (S)

Here U[a, b, (p, x, y)(a′, b′)] denotes the utility type (a, b) gets from reporting (a′, b′) in the mech-
anism (p, x, y). I also impose the following technical restriction on admissible mechanisms:

Assumption 2. The designer is restricted to discounting rules x ∶ [0, 1]2 → [0, 1] that are piecewise
continuously differentiable in each dimension of the type.

I call a mechanism (p, x, y) satisfying (IC),(IR), (S) and Assumption 2 feasible.

A few features of the model are worth discussing. First, I assume that the designer does not
value the revenue she receives from the mechanism. This might correspond to an environment
where payments are not monetary, but represent a wasteful ordeal such as form-filling or trav-
elling to a distant office. Alternatively, it may capture the nature of social programs whose par-
ticipants are significantly poorer than the average taxpayer, so a redistributive designer would
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not want to use them to collect revenue.2 In practice, we might expect the designer to con-
sider transfers wasteful, but still have some value for the collected revenue. For government
programs, this could be the case when rebating it to participants is possible but costly due to
bureaucratic inefficiency or because distributing cash lacks the screening benefits of in-kind
transfers—when the designer hands out a free (or subsidized) inferior good, only relatively
poor agents will want to participate as wealthier ones can afford higher-quality alternatives.
Thus, the subsidy is automatically targeted to those who need it most (Besley and Coate, 1991).
As soon as the designer hands out cash, such targeting disappears as money is desired by
everyone, regardless of wealth. Note, however, that the extreme assumption that revenue is
completely wasted works against the main result that the designer only wants to screen agents
using money. If the designer considered transfers neutral or attributed some weight in (0, 1) to
them, she would have even more reason to rely on payments.

Second, my model does not permit the designer to use lotteries between the two goods. While
this assumption is restrictive, it renders an otherwise unwieldy model tractable. As I explain in
the following section, the fact that the designer chooses two separate menus of payments and
wait times, one for each good, lets me represent mechanisms as boundaries splitting the type-
space into three distinct regions. This additional structure allows me to find the best mechanism
by optimizing over the space of implementable boundaries. Moreover, restricting the designer
to wait times and payments, without the use of lotteries, makes the comparison between these
two common screening instruments clearer.

Finally, in many settings wait times are not an explicit design choice but arise naturally as
byproducts of the system’s equilibrium dynamics—public housing waitlists, for instance, de-
velop endogenously to clear markets when rental prices are too low to do so. Nonetheless, en-
dogenously arising differences in wait times continue to exhibit screening properties described
by the model. Moreover, even in these cases, we can view waitlists as a consequence of design
choices, and thus, indirectly, as designed objects. For instance, the imbalance between wait
times for different kinds of housing can be influenced by suitably adjusting their rents. By rais-
ing the subsidy for the less desired unit and increasing the price of the popular one, the designer
can bring the lengths of their waitlists closer together, and in doing so diminish the ‘screening
role’ of wait times in the program. Relatedly, one can interpret the model as a dynamic one in
which flows of goods and agents arrive over time. The designer then operates two waitlists,
letting arriving agents choose which waitlist to join and whether they want to pay extra to re-
duce their wait time in it. The model then corresponds to a patient designer choosing menus of
such pay-to-skip options to maximize total welfare in the waitlists’ steady states. The supply
constraints (S) ensure that the mass of agents assigned to either waitlist in the representative

2While the model does not explicitly account for wealth differences or heterogeneous welfare weights among
agents, this can be viewed as an approximation of a scenario where such differences exist but are relatively small
between participants compared to the gap between participants and the average taxpayer. This is especially likely
when the designer allocates inferior goods, such as public housing in undesirable areas. The designer’s welfare-
weighted objective can then be approximated by a constant weight on all participants, which is distinct from that
on revenue, representing her welfare weight for the average taxpayer.
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steady-state period does not exceed the mass of the corresponding good that arrives in it.

3 Feasible mechanisms

Let us first describe the properties of feasible mechanisms. It will be convenient to characterize
them in terms of good-specific indirect utilities UA, UB ∶ [0, 1]→R+, defined as follows:

UA(a) = max
(a′,b′)

{x(a′, b′) ⋅ a − p(a′, b′) ∶ y(a′, b′) ∈ {A,∅}} , (1)

UB(b) = max
(a′,b′)

{x(a′, b′) ⋅ b − p(a′, b′) ∶ y(a′, b′) ∈ {B,∅}} . (2)

Note that UA and UB are convex and increasing. Intuitively, UA(a) and UB(b) represent the
highest utility type (a, b) could get from selecting some wait time and payment option for the
A- and the B-goods, respectively (or not participating). Then agents for whom UA(a) < UB(b)
choose good A and those from whom UA(a) > UB(b) choose good B.

Good-specific indirect utilities depend only on one dimension of the type—an agent’s value for
good B does not affect her choice of wait time and payment option if she chooses good A. We
can thus write each type’s discounting x purely as a function of the relevant component of the
type. To that end, define xA, xB ∶ [0, 1]→ [0, 1] as:

U′A(a) ∶= xA(a), U′B(b) ∶= xB(b).3

Indeed, by the envelope theorem (Milgrom and Segal, 2002), x(a, b) equals to xA(a) and xB(b)
for almost all types who get A and B, respectively.

We will now use UA and UB to describe agents’ choices of goods. To that end, let us also define
a mechanism’s lowest participating values as follows:

a = sup{a ∶ UA(a) = 0}, b = sup{b ∶ UB(b) = 0}.4 (3)

Definition 1. Let a boundary be a function z ∶ [a, a] → [b, b] that is continuous, strictly increasing
and satisfies a ≤ 1 and b ≤ 1, with one of them holding with equality.

Lemma 1. All types pointwise below the lowest participating values do not get either good, that is
y(a, b) = ∅ for all (a, b) < (a, b).5

Suppose a positive mass of agents gets either good. Then the good choices of types (a, b) > (a, b) are
characterized by some boundary z ∶ [a, a] → [b, b]. A type (a, b) > (a, b) gets good A if (a, b) is below

3We also assume that xA and xB are left-continuous. This pins down the values of these functions in places
where UA, UB are not differentiable.

4Since the mechanism offers a non-participation option, we always have UB(0) = UA(0) = 0. Thus, these
suprema are well-defined.

5When comparing vectors, I will use ≥ and > for pointwise comparisons.
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Figure 1: Types below the boundary (orange) choose good A and types above it
(blue) choose good B.

the boundary z, that is, if z(a) > b, and gets good B if (a, b) is above the boundary z, that is, if z(a) < b.
Moreover, types at the boundary are indifferent between both goods, thus:

UA(a) = UB(z(a)) for all a ∈ [a, a]. (I)

I then say that the mechanism implements the boundary z.

When goods A and B are only given out at positive prices, types with sufficiently low values
for both of them, i.e. (a, b) < (a, b), do not participate. To understand the good choices of
participating types, consider some (a1, b1) choosing good A (Figure 1). Then any type (a, b)
with a > a1 and b < b1 will also choose good A—since she values the A-good even more than
(a1, b1) and values the B-good even less, all the payment and wait time options for good B are
strictly less attractive to her than they were to (a1, b1). We can now notice that the types who are
indifferent between their best options for either good lie on an increasing curve z originating
from (a, b). By the above logic, all types below this curve choose A and pick some payment and
wait time option from its menu, while types above it choose B.

We can therefore think of our multidimensional mechanism design problems as two single-
dimensional problems connected endogenously through the boundary z. While agents on its
either side effectively face one-dimensional problems, making one of the goods more attractive
invites more types to switch to it, effectively deforming the boundary.

Note also that despite the boundary z(a) being written as a function of a, the setting is sym-
metric with respect to both goods. Thus, any results about z(a) also apply to its inverse, z−1(b).
This observation will be analytically useful: throughout, we will encounter properties that must
hold either for the boundary z(a) or for its inverse. However, the symmetry of the setting w.r.t.
the two goods guarantees that assuming them for z(a) is without loss.
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4 Optimal mechanism

I show that the planner’s optimal mechanism is extremely simple:

Theorem 1. The optimal mechanism implements the efficient allocation of goods, and allocates both of
them without waiting. It posts a separate price for each good. The prices are chosen so that the whole
supply of both goods is allocated.

While the designer could incentivize agents to select the socially optimal good by using a com-
bination of wait times and payments, Theorem 1 says she should only use the latter. That is,
payments dominate wait times as a screening device even when the designer has zero value for
revenue. Moreover, the optimal price mechanism guarantees that the allocation of both goods
is efficient, in the sense that it maximizes the aggregate value of the goods to recipients.

More abstractly, one can understand the result as saying that wasteful screening devices that en-
ter an agent’s utility additively are superior to those that multiply the agent’s type. Consequently,
one can also interpret x < 1 as damage or a usage restriction that the designer imposes on the
good. In this case, Theorem 1 tells us that the designer would never want to damage either
good in order to incentivize fewer agents to choose it.

I present two complementary intuitions behind Theorem 1. The first one explains why an anal-
ogous result would hold in a simple, one-dimensional version of the model where only one
good is scarce. In such an environment, any mechanism that satisfies the supply constraint
must deter low-value agents by imposing some burden on all agents taking A, and by doing so
enforce the right type cutoff for choosing it. However, when this burden is imposed through
wait times, it hurts inframarginal agents with high values for A even more strongly than it
hurts the cutoff type it is meant to deter. Payments, on the other hand, are ‘equally costly’ to
everyone, thus leaving more rents to high value types.

In the above example, however, the set of agents who choose good A is described by a simple
cutoff. By contrast, in a multidimensional model the designer can use different combinations
of wait times and payments to assign goods to agents in complex ways. The second intuition
therefore highlights why screening with wait times leads types to choose goods less efficiently
than does screening with money alone—since wait times multiply agents’ values for goods,
they screen on relative preferences for them. Prices, however, enable participants to express
absolute valuations, which is what fundamentally matters for allocative efficiency.

4.1 Intuition 1: wait times are more costly to inframarginal agents

Consider a simplified model where a unit mass of agents has types a distributed according to
G with full support on [0, 1]. The designer has a mass µA ∈ (0, 1) of good A and an unlimited
supply of good B. All agents value good B at b ∈ (0, G−1(µA)), that is, strictly more than µA
agents prefer good A to good B. For simplicity, we assume the designer can ask agents to
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wait for the scarce A-good, but not the B-good. Thus, the designer chooses an allocation rule
y ∶ [0, 1] → {A, B}, a discounting rule xA ∶ [0, 1] → [0, 1], and a payment rule p ∶ [0, 1] → R+ to
maximize total welfare, subject to IC, IR and supply constraints analogous to those in the main
model.

Proposition 1. The optimal mechanism in the one-dimensional model offers good B for free and posts a
price for good A, which she allocates without waiting. The whole available supply of A is allocated.

Proof. Since good B is always allocated without waiting, all agents receiving it must by paying
the same price pB for it. Note also that any feasible mechanism must allocate good A to at most
µA ∈ (0, 1) agents. A single-crossing argument then tells us there exists some a ∈ [0, 1] such that:

y(a, b)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

= A, if a > a,

= B, if a < a.

Let a∗ ∈ (0, 1) be the cutoff for which the supply constraint binds. By Myerson’s Lemma (Myer-
son, 1981) we can then reduce the problem to choosing some pB ≥ 0, a ∈ [a∗, 1] and an increasing
xA ∶ (a, 1]→ [0, 1]. Total welfare then becomes:

W = G(a) ⋅ (b − pB)+∫
1

a
U(v) dG(v) where U(a) = b − pB +∫

a

a
xA(v)dv.

Total welfare therefore decreases in pB and increases pointwise in xA(a). Thus, the optimal
single-good mechanism features pB = 0, a = a∗, and xA(a) = 1 for all a > a∗. Note that the
payment for types above a must be constant and equal to some pA.

Intuitively, every feasible mechanism must allocate the A-good to agents with types above some
cutoff a. This cutoff must then be enforced by making good A costly enough so that type a is
indifferent between A and the outside option B. Let us compare two ways of enforcing such a
cutoff. First, the designer could impose a wait on anyone requesting good A, i.e. decrease xA
to the point where the cutoff agent is indifferent:

b = xa ⋅ a.

The designer could also charge a price pA enforcing the same cutoff:

b = a − pA.

While both of these mechanisms hurt the cutoff type a equally, the wait time mechanism is more
costly to inframarginal types a > a who choose good A. Payments, on the other hand, are equally
costly to everybody. Thus, the payment mechanism leaves more surplus to high-value takers
of A, leading to higher welfare (Figure 2).
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Figure 2: Indirect utilities U(a) = b + ∫ a
a xA(v)dv for the wait time mechanism (left)

and the price mechanism (right).

4.2 Intuition 2: wait times screen on relative values, prices screen on absolute values

In a two-dimensional model, being able to combine wait times and payments gives the deisgner
more freedom to ‘sort’ agents into the two goods. I now explain why wait times screen agents
in a qualitatively worse way than do payments, and thus why the designer would not benefit
from incorporating them into the mechanism. To illustrate this, I consider two examples: one
where µA + µB = 1 and the designer does not use payments, and one where the designer uses
only payments and achieves the efficient allocation of goods.

Proposition 2. Suppose µA +µB = 1 and consider a mechanism that allocates both goods without using
money. Then there exists k ∈ (0,∞) such that all types with a/b > k take good A and all types with
a/b < k take good B.

Proof. When p(a, b) ≡ 0, all types choosing either good must have the same discounting xA, xB.
The boundary z for this mechanism must then satisfy the boundary indifference condition:

a ⋅ xA = z(a) ⋅ xB for all a ∈ [0, a]. (I)

Thus, by Lemma 1, all types for whom a/b > k = xA/xB choose good A, and all types for whom
a/b < k choose good B.

Under such a mechanism both goods are handed out for free, and so all applicants with non-
zero value for either good will want one. Moreover, in the absence of payments, the ‘market
will clear’ based on wait times—if good A is overdemanded, that is, preferred by more agents
than the mass of this good—the wait time for it will be longer. This will in turn deter some
agents who prefer good A from choosing it and encourage them to take B instead. Importantly,
however, wait times can only screen agents based on their relative values for the two goods, that
is, the ratio a/b. Graphically, this corresponds to the boundary z partitioning the type space
along a ray originating from zero (Figure 3). The slope of the boundary reflects the ratio a/b for
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Figure 3: Without money, agents choose goods based on a/b.

which agents are indifferent between the two goods with those wait times. This slope is pinned
down by the relative supply of the two goods.

Thus, when we screen agents with wait time, the designer will not be able to distinguish be-
tween two agents whose value ratios a/b are equal but whose absolute values differ. However,
the designer cares about these two agents’ allocations to different extents. If the former agents’
values for both goods are higher, it is more important to give her the good she prefers. The first-
best mechanism would therefore distort the assignments to agents whose values for both goods
are low (by giving them the less demanded one) and leave the overdemanded good to those
whose absolute value for it is large. Screening with payments alone can accomplish exactly
that. Indeed, a payment-only mechanism can achieve the efficient allocation, that is, maximize:

∫ 1y(a,b)=A ⋅ a + 1y(a,b)=B ⋅ b dF(a, b), (E)

subject to the supply constraint (S).

Proposition 3. A mechanism that posts a single price for each good and allocates the whole supply of
both goods maximizes allocative efficiency (E).

Proof. Consider a linear relaxation of the problem of maximizing allocative efficiency, namely
the problem of choosing qA, qB ∶ [0, 1]2 → [0, 1] to maximize:

∫ qA(a, b) ⋅ a + qB(a, b) ⋅ b dF(a, b),

subject to:

∫ qA(a, b)dF(a, b) ≤ µA, ∫ qB(a, b)dF(a, b) ≤ µB, (4)

qA(a, b)+ qB(a, b) ≤ 1 for every (a, b) ∈ [0, 1]2. (5)

Since µA + µB ≤ 1 and a unit mass of types has positive values for both goods, both supply
constraints (4) will holds with equality. The objective and constraints are linear so the solution
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Figure 4: The boundary corresponding to the two-posted-price mechanism.

exists and must also maximize:

∫ qA(a, b) ⋅ (a − ηA)+ qB(a, b) ⋅ (b − ηB) dF(a, b), (6)

subject to (5) for some multipliers ηA, ηB ≥ 0. Note also that ηA, ηB < 1. Otherwise, the maxi-
mizer of (6) would not allocate one of the goods at all, and we know that supply constraints
must hold with equality. Now, notice that qA, qB maximize (6) if and only if they satisfy the
following almost everywhere:

qA(a, b) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if a − ηA >max{0, b − ηB},
0, otherwise,

, qB(a, b) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if b − ηB >max{0, a − ηA},
0, otherwise.

Such an allocation is implemented by a mechanism with no wait times and two posted prices
equal to ηA, ηB.

The proposition is a standard example of the efficiency of prices. However, the mechanism
implementing the efficient allocation might require agents to make large payments, and so a
designer who cares about agents’ welfare might still find this form of screening very costly.

Graphically, the two-posted-price mechanism corresponds to a linear boundary z(a)with slope
1 originating from the point (a, b) (Figure 4). This can be seen from the boundary indifference
condition (I). Differentiating it gives:

xA(a) = xB(z(a)) ⋅ z′(a). (DI)

Under this mechanism both goods come with no discounting, so xA, xB = 1, implying z′(a) = 1.
Moreover, the lowest participating values a and b have to equal to the two goods’ prices.
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5 Proof of Theorem 1

I first use Lemma 1 to characterize feasible mechanisms in terms of their corresponding dis-
counting rules xA, xB and the boundary z they implement. The proof of this and other facts and
lemmas can be found in the Appendix.

Lemma 2. A mechanism is feasible if and only if its corresponding xA, xB are piecewise continuously
differentiable, weakly increasing and implement a boundary z satisfying the following properties:

1. The supply constraint (S’) holds:

∫
1

a
∫

z(min[a,a])

0
f (a, v)dv da ≤ µA, ∫

1

b
∫

z−1
(min[b,b])

0
f (v, b)dv db ≤ µB. (S’)

2. z is piecewise twice continuously differentiable on (a, a).

3. z has strictly positive and finite left- and right-derivatives at all a ∈ (a, a), and a strictly positive
and finite left-derivative at a.

The result changes the way we express supply constraints. Rather than look at good allocations
y(a, b) directly, it takes advantage of the fact that types who get good A (B) are below (above) the
boundary. It then measures the masses of agents getting either good by integrating over agents
below and above z (Figure 5). Also, Assumption 2 guarantees that the boundaries implemented
by feasible mechanisms are well-behaved, satisfying properties 2 and 3.

a

b

z(
a)

a

b

1

1

Figure 5: The supply condition (S’) ensures that the probability masses below the
boundary (orange) and above it (blue) are at most µA and µB, respectively. The red
arrows mark the directions of integration in the left-hand-sides in (S’).

Lemma 1 also lets us rewrite total welfare (W) in terms of good-specific indirect utilities UA, UB
and their associated boundary z:

W[z] ∶= ∫
1

a
∫

z(min[a,a])

0
f (a, v)dv ⋅UA(a) da + ∫

1

b
∫

z−1
(min[b,b])

0
f (v, b)dv ⋅UB(b) db. (W’)
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The rest of the argument can be broken down into two stages: in the first stage, I consider all the
mechanisms that implement a particular boundary z and find the one that does so optimally.
Then, in the second stage, I consider mechanisms optimally implementing different boundaries
z and look for the boundary z∗ that maximizes (W’). I use optimal control tools to show that the
optimal boundary z∗ has to be linear, and thus offer a single wait time and price option for each
good. Finally, I show that the optimal mechanism allocates the whole available supply of both
goods, and that its corresponding boundary has slope 1. This in turn means the mechanism
does not require wait times for either good.

5.1 Optimally implementing a fixed boundary

We now fix any boundary z and look for a mechanism that optimally implements it. By Lemma
2, discounting rules xA, xB for all feasible mechanisms are weakly increasing. Recall also that
any mechanism implementing z satisfies boundary indifference (I):

UA(a) = UB(z(a)) for all a ∈ [a, a]. (I)

Differentiating (I) tells us that xA, xB have to satisfy the following condition almost everywhere:

xA(a) = xB(z(a)) ⋅ z′(a). (DI)

Now, consider some type (a′, b′) on the boundary and suppose that the boundary is convex on
some interval [a′′, a′]. Then z′(a)would be increasing on that interval, and would satisfy:

xA(a)
xB(z(a))

= z′(a).

Since xB(z(a)) is non-decreasing on this interval, it means that xA(a) has to be strictly increas-
ing on it, and thus distorted downwards from xA(a′) below a′. More generally, in order to make
a boundary curve up or down somewhere, a mechanism must induce a separating allocation of
discounting on at least one side of the boundary there. However, inducing such separation is
costly, as it requires imposing wasteful wait times on agents with lower types. Note, however,
that altering the shape of the boundary could, in principle, be beneficial despite this cost, as
it might entice agents to choose between the A- and B-goods in a more socially efficient way.
Nevertheless, more separation cannot be better conditional on implementing the same boundary.
Consequently, a fixed boundary is implemented most efficiently by a mechanism that sepa-
rates agents’ allocations as little as possible while still satisfying boundary indifference (I). This
observation is formalized in the following Lemma:

Definition 2. Let a closed interval be a convex (concave) region of z if z is convex (concave) on it.

Lemma 3. Fix any boundary satisfying properties 1 − 3 of Lemma 2. Then the mechanism optimally
implementing z exists, is unique, and satisfies the following properties:
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1. On concave regions, xA(a) is constant and xB(z(a))∝ 1/z′(a).

2. On convex regions, xB(z(a)) is constant and xA(a)∝ z′(a).

3. At least one of xA(a) and xB(z(a)) is continuous at every a ∈ (a, a].

4. If a < 1, xA is constant on (a, 1]. If b < 1, xB is constant on (b, 1].

5. max[xA(1), xB(1)] = 1.

Intuitively, minimizing separation means that at most one of xA(a), xB(z(a)) is strictly increas-
ing on any region of the boundary. If both of them were strictly increasing somewhere, we
could keep raising them pointwise in a (DI)-preserving manner until one of the monotonicity
constraints started binding. Wherever the boundary is convex, the monotoniciy constraint on
xB will bind, wherever it is concave, that on xA will (Figure 6).

xB constant

xA constant

a

b

Figure 6: xB (xA) is constant where the boundary z is convex (concave).

5.2 Choosing the optimal boundary

Having pinned down the optimal way to implement a given z, we can turn to searching for the
best boundary among all optimally implemented ones. Let z∗ be optimal boundary and a∗, b∗

be the lowest participating values associated with it.

Proposition 4. The optimal boundary z∗ ∶ [a∗, a∗]→ [b∗, b
∗
] is linear.

I prove this proposition by considering optimal control problems of choosing a boundary on a
part of a convex/concave region. I show that no boundary with strictly convex/concave parts
or kinks can satisfy the necessary optimality conditions, and thus that the optimal boundary has
to be linear. This observation greatly simplifies the search for the optimal mechanism. Indeed,
a linear boundary corresponds to a mechanism offering only two wait time and price options:
one for good A and one for good B. Knowing this additional structure lets me show that the
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designer always wants to allocate the whole supply of both goods. Intuitively, if she were to
discard some of one good’s supply, she could do better by simply lowering its price and letting
demand for it increase. This intuition underlies the proof of the following lemma:

Lemma 4. The optimal mechanism allocates the whole supply of both goods.

The final step of the proof requires showing that the optimal linear boundary indeed has a slope
of 1. Intuitively, this is the only slope which can be implemented by not requiring any agents to
wait. To see this, recall that the following condition has to hold for any boundary with slope s:

xA(a) = xB(x(a)) ⋅ s.

Lemma 3 then tells us that the optimal implementation of the boundary features constant xA,
xB, with the higher one being equal to 1. Thus, when s ≥ 1, we have xA = 1 and xB = 1/s. While
setting a slope of s > 1 would require introducing wait times for one of the goods, it would also
lower its price. Still, the intuitions from Section 4 suggest this trade-off should be resolved in
favour of not inflicting delays:

Lemma 5. The optimal boundary z∗ is linear with a slope of 1.

Thus, the optimal mechanism allocates the whole supply of both goods, and does so without
delays. To make (IC) hold, it must then charge the same prices pA, pB to all agents receiving a
given good. By Proposition 3, this mechanism also implements the efficinet allocation.

6 Conclusion

When a welfarist designer allocates two scarce goods among agents with heterogeneous valu-
ations, screening with prices strictly dominates screening with wait times even if the designer
has no value for the collected revenue. Intuitively, requiring agents to wait disproportionately
penalizes high-value types, while charging money imposes a uniform cost across all takers and
thus preserves more surplus. Moreover, wait times can only screen on relative preferences
for the two goods, whereas prices allow the designer to elicit absolute valuations; thus, they
tend to implement more efficient allocations. Despite the model’s stylized nature, these two
intuitions provide more general lessons about the nature of prices and wait times as screening
instruments.

While completely eliminating wait times is impractical in many contexts—waitlists for housing
inevitably appear due to supply and demand fluctuations—the core observations of the paper
remain relevant even then. For instance, public housing programs frequently feature extreme
disparities in wait times between different developments, effectively enticing participants to
choose between them based on willingness to wait. The policymaker could mitigate such dis-
parities by adjusting the units’ rents or subsidies, thereby reducing the reliance on waiting as a
screening device.
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A Omitted proofs

The following fact and corollary will be useful throughout.

Fact 1. Let f be differentiable on (0, γ) and limx→0+ f ′(x) = l ∈R. Then f ′+(0) = l.

Proof. For x ∈ (0, γ), we have f (x)− f (0) = ∫
x

0 f ′(t)dt. We therefore want to show that:

lim
x→0+

f (x)− f (0)
x

= lim
x→0+

1
x ∫

x

0
f ′(t)dt = l ⇔ lim

x→0+
1
x ∫

x

0
( f ′(t)− l) dt = 0.

We do it by showing that for every ϵ > 0 there exists δ > 0 such that for all x ∈ (0, δ)we have:

∣1
x ∫

x

0
( f ′(t)− l) dt∣ < ϵ.

Fix any such ϵ. Since f ′(t)→ l, there exists δ > 0 such that for all t ∈ (0, δ)we have:

∣ f ′(t)− l∣ < ϵ.

Take any x ∈ (0, δ), integrate the above inequality over (0, x) and divide through by x. Then:

1
x ∫

x

0
∣ f ′(t)− l∣dt < ϵ.

The triangle inequality then gives:

1
x
∣∫

x

0
( f ′(t)− l) dt∣ ≤ 1

x ∫
x

0
∣ f ′(t)− l∣dt < ϵ.

Corollary 1. Let f be differentiable on (−γ, 0) and (0, γ) and such that:

lim
x→0+

f ′(x) = lim
x→0−

f ′(x) = l ∈R.

Then f ′(0) exists and is equal to l.

18



A.1 Proof of Lemma 1

Suppose some type (a, b) < (a, b) could weakly benefit from requesting either good. Then some
type (a + ϵ, b + ϵ) < (a, b), for ϵ > 0 small enough, would strictly benefit from it, so one of
UA(a + ϵ) and UB(b + ϵ) would have to be strictly above zero. Since UA, UB are increasing,
this contradicts the definition of (a, b). Thus, y(a, b) = ∅ for all (a, b) < (a, b).

Analogously, all types for whom a > a or b > b strictly benefit from choosing one of the goods.
Moreover, a positive mass of types gets either good, and thus a, b < 1. Let us now identify
the set of types (a, b) ≥ (a, b) who are indifferent between the two goods, that is, for whom
UA(a) = UB(b). This is the case for (a, b) by construction. Recall also that UA, UB are continuous
and strictly increasing on [a, 1] and [b, 1], respectively. Therefore, all indifferent types must lie
on a continuous and strictly increasing curve originating from (a, b). Let z(a) ∶ [a, a] → R

describe this curve; notice that either a = 1 or z(a) = 1. By construction, any type (a, z(a)) > (a, b)
is indifferent between her best options for both goods. Then, by the standard single-crossing
argument, any type (a′, z(a)) with a′ > a strictly prefers to choose good A. Analogously, any
type (a, b′)with b′ > z(a) strictly prefers to choose good B.

A.2 Proof of Lemma 2

(⇒). Fix any increasing and piecewise continuously differentiable xA, xB that implement a
boundary satisfying properties 1 − 3. I will construct a feasible mechanism that corresponds
to them. Define ŨA, ŨB such that:

ŨA(a) = ∫
a

0
xA(v)da, ŨB(b) = ∫

b

0
xB(v)db.

I will show that ŨA, ŨB are the good-specific indirect utilities for the following mechanism, and
that the mechanism is feasible:

p(a, b) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a ⋅ xA(a)− ŨA(a), if ŨA(a) ≥ ŨB(b),
b ⋅ xB(b)− ŨB(b), if ŨB(b) > ŨA(a),

x(a, b) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

xA(a), if ŨA(a) ≥ ŨB(b),
xB(b), if ŨB(b) > ŨA(a),

y(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∅, if (a, b) ≤ (a, b),
A, if a > a and ŨA(a) ≥ ŨB(b),
B, if b > b and ŨB(b) > ŨA(a).

A standard envelope argument verifies that, under this payment rule, no (a, b) wants to mis-
report to (a′, b′) for which y(a′, b′) = y(a, b). That is, conditional on choosing the good she was
assigned, (a, b) prefers her assigned wait time and payment option. Then ŨA, ŨB are indeed
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the good-specific indirect utilities for this mechanism because:

UA(a) = a ⋅ xA(a)− (a ⋅ xA(a)− ŨA(a)) = ŨA(a),

UB(b) = b ⋅ xB(b)− (b ⋅ xB(b)− ŨB(b)) = ŨB(b).

Verifying that (IC) holds therefore only requires checking that no (a, b) wants to misreport to
(a′, b′) for which y(a′, b′) ≠ y(a, b). But since ŨA(a) and ŨB(b) are the best utilities (a, b) can
get from either good, this is true by the construction of y(a, b). Note also that (IR) must hold as
both good-specific indirect utilities are positive everywhere.

It therefore remains to check the supply condition (S). By Lemma 1:

∫ 1y(a,b)=A dF(a, b) = ∫
1

a
∫

z(min[a,a])

0
f (a, v) dv da ≤ µA,

∫ 1y(a,b)=B dF(a, b) = ∫
1

b
∫

z−1
(min[b,b])

0
f (v, b) dv db ≤ µB,

where the inequalities hold by property 1. Thus, the supply constraint (S) must hold.

(⇐). Fix any feasible mechanism (p, x, y). Then its UA and UB must be convex, and so xA, xB
must be weakly increasing. Furthermore, by Lemma 1, types (a, 0) where a > a choose good A
and types (0, b)where b > b choose good B. Then the following holds almost everywhere:

xA(a) = x(a, 0) for a ∈ [a, a], xB(b) = x(0, b) for b ∈ [z(a), z(a)]. (7)

Since x is piecewise continuously differentiable, so are xA and xB.

I now show the boundary z satisfies property 2. Integrating (7) tells us that ŨA and ŨB are piece-
wise twice continuously differentiable. Now, by Lemma 1, z satisfies the boundary indifference
condition:

UA(a) = UB(z(a)) for all a ∈ [a, a]. (I)

UB is strictly increasing on [z(a), z(a)], so it is invertible there:

U−1
B (UA(a)) = z(a) for all a ∈ [a, a].

Since UA and UB were piecewise twice continuously differentiable on [a, a] and [z(a), z(a)],
respectively, z is piecewise twice continuously differentiable on (a, a).

I now prove z satisfies property 3. I show that left-derivatives are positive and finite for all
a ∈ (a, a] (the argument for right-derivatives on (a, a) is analogous). Since z is piecewise twice
continuously differentiable, it suffices to check the finitely many points where it is not differen-
tiable. Consider any such â. Then z is differentiable in some neighbourhood (â − ϵ, â) for ϵ > 0
small enough. On that interval, differentiating (I) gives:

xA(a) = xB(z(a)) ⋅ z′(a). (DI)
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Since xB(z(a)) > 0 on this interval, we have:

z′(a) = xA(a)
xB(z(a))

.

Note that xA(a) ↑ xA(a−) > 0 and xB(z(a)) ↑ xB(z(a)−) > 0 as a ↑ â. Thus, we also know that
z′(a) ↑ xA(a−)/xB(z(a)−). Fact 1 then completes the proof.

Finally, let us show that (S’) holds. Recall UA(a) > UB(b) for almost all agents for whom y(a, b) =
A, so by Lemma 1:

∫
1

a
∫

z(min[a,a])

0
f (a, v)dv da = ∫ 1y(a,b)=A dF(a, b) ≤ µA,

where the inequality holds by (S). An analogous expression also holds for B.

A.3 Proof of Lemma 3

In what follows I prove properties 1, 3, and 5; property 2 is symmetric to property 1. The
proof of property 4 is analogous to that of property 2. I later show that a mechanism satisfying
properties 1− 5 exists for every implementable boundary and is unique.

Fact 2 (Property 1). On concave regions, xA(a) is constant and xB(z(a))∝ 1/z′(a).

Proof. Let xA, xB be some discounting rules implementing z and consider any concave region
[v, v]. I will propose feasible x̃A, x̃B that implement z and improve upon xA, xB; the improve-
ment is strict if the statement of the fact did not hold for the original xA, xB.

Define ξ ∶ [v, v]→R such that:

ξ(v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if v = a,
xA(v)
xA(v)

, if v ≠ a.

xA is increasing, so ξ(v) is decreasing and ≥ 1 for v > a. Let x̃A, x̃B be discounting rules s.t.:

x̃A(a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xA(a) ⋅ ξ(v) if a ≤ v,
xA(a) ⋅ ξ(a) if v < a ≤ v,
xA(a) if a > v,

x̃B(b) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xB(b) ⋅ ξ(z−1(v)) if b ≤ z(v),
xB(b) ⋅ ξ(z−1(a)) if z(v) < b ≤ z(v),
xB(b) if b > z(v).

I will denote their corresponding good-specific indirect utilities by ŨA, ŨB. The remainder of
the proof consists of showing that this alternative mechanism implements the boundary z, that
it is feasible, and that it improves upon the original mechanism.

Implementing the boundary. It suffices to show that ŨA, ŨB satisfy the boundary indifference
condition:

ŨA(a) = ŨB(z(a)) for all a ∈ [a, a]. (I’)
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First, recall that (I) for xA, xB implies (DI) almost everywhere:

xA(a) = xB(z(a)) ⋅ z′(a). (DI)

Now, consider (DI) on a ∈ [0, a] and multiply both sides of (DI) by ξ(v) to obtain:

xA(a) ⋅ ξ(v)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=x̃A(a)

= xB(z(a)) ⋅ ξ(v)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=x̃B(z(a))

⋅z′(a). (DI’)

Integrating the above equation over [0, a] then gives ŨA(a) = ŨB(z(a)) on this interval.

Let us now show that (I’) holds on [v, v]. By the above, we know that:

ŨA(v) = ŨB(z(v)). (8)

Take (DI) for a ∈ [v, v] and multiply both sides by ξ(a):

xA(a) ⋅ ξ(a)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=x̃A(a)

= xB(z(a)) ⋅ ξ(a)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=x̃B(z(a))

⋅z′(a).

Fix any a ∈ [v, v] and integrate the above equation over [v, a]. This gives:

ŨA(a)− ŨA(v) = ŨB(z(a))− ŨB(z(v)).

Summing it with (8) then yields (I’) for any a ∈ [v, v].

Let us then show (I’) holds on [v, a] as well. By the above, we know that:

ŨA(v) = ŨB(z(v)). (9)

Recall that x̃A(a) = xA(a) and x̃B(z(a)) = xB(z(a)) for a ∈ [v, a]. Take any a in this interval. Then
integrating both sides of (DI) over [v, a] and summing it with (9) yields (I’) for any a ∈ [v, a].

Feasibility. Since the original mechanism also implemented z, Lemma 2 tells us it remains to
show that x̃A, x̃B are piecewise continuously differentiable and weakly increasing. Note x̃A, x̃B
inherit piecewise continuous differentiability from xA, xB. They are also weakly increasing on
[a, v] and [b, z(v)], respectively, as x̃A, x̃B are constructed by rescaling weakly increasing xA, xB
by ξ(v) > 0. On (v, v], we have:

x̃A(a) = xA(a) ⋅ ξ(a) = xA(a) ⋅
xA(v)
xA(a)

= xA(v),

and thus x̃A is constant on this interval. Moreover, the ‘pasting’ of xA at v preserves monotonic-
ity as xA(v) = xA(v+). Now, on (z(v), z(v)]we have:

x̃B(z(a)) = xB(z(a)) ⋅ ξ(z−1(z(a))) = xB(z(a)) ⋅
xA(v)
xA(a)

.
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However, Fact 1, (DI), and the left-continuity of xA tell us that xB(z(a)) = xA(a)/z′−(a), giving:

x̃B(z(a)) =
xA(v)
z′−(a)

.

Here z′−(a) is the left derivative of z(a), which exists because z is concave on this interval. Then
the LHS is increasing as z′−(a) is positive and decreasing on the concave region [v, v]. Moreover,
the ‘pasting’ of xB(b) at z(v) preserves monotonicity as:

x̃B(z(v)) = xB(z(v)) ⋅
xA(v)
xA(a)

= x̃B(z(v)+).

Let us finally consider (v, a] and (z(v), z(a)]. Since x̃A, x̃B agree with xA, xB there, they will be
weakly increasing. Moreover, the pastings at v and z(v) preserve monotonicity because:

x̃A(v) = xA(v+), x̃B(z(v)) = xB(z(v)+).

Improvement. Note x̃A, x̃B are pointwise higher than xA, xB and so ŨA, ŨB are pointwise higher
than UA, UB. Since total welfare (W’) features all good-specific indirect utilities with strictly
positive weights, the proposed mechanism improves upon the originial one. If the original
mechanism did not satisfy property 1, ŨA, ŨB would be strictly higher than UA, UB on some
interval, and so the improvement would be strict.

Fact 3 (Property 3). At least one of xA(a) and xB(z(a)) is continuous at every a ∈ (a, a].

Proof. Suppose there is â ∈ (a, a) where neither xA(a) nor xB(z(a)) are continuous; I will con-
struct x̃A, x̃B that implement z and strictly improve upon the original allocation. Define:

χ ∶=max [xA(â+)
xA(â)

,
xB(z(â)+)
xB(z(â))

] , (10)

where these right-limits exist because xA, xB are both increasing. Since both xA, xB are left-
continuous and discontinuous at â and z(â), respectively, we have χ > 1.

Assume without loss that xA(â
+
)

xA(â)
≤ xB(z(â)

+
)

xB(z(â))
and consider the proposed improvement:

x̃A(a) =
⎧⎪⎪⎨⎪⎪⎩

xA(a) ⋅ χ, if a ≤ â,
xA(a), if a > â,

x̃B(b) =
⎧⎪⎪⎨⎪⎪⎩

xB(b) ⋅ χ, if b ≤ z(â),
xB(b), if b > z(â).

I will now verify that a mechanism with these discounting rules implements the boundary z,
that it is feasible, and that it strictly improves upon the original one.

Implementing the boundary. It suffices to show that ŨA, ŨB satisfy the boundary indifference
condition (I’). We know that UA, UB satisfy (I). Since ŨA, ŨB coincide with UA, UB for a ≥ â, (I’)
holds there too. Moreover, integrating x̃A, x̃B tells us that for a < â:

ŨA(a) = UA(a) ⋅ χ, ŨB(z(a)) = UB(z(a)) ⋅ χ,
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meaning that (I’) holds there too.

Feasibility. It suffices to show that x̃A, x̃B are piecewise continuously differentiable and weakly
increasing. Note x̃A, x̃B inherit piecewise continuous differentiability from xA, xB. Let us now
show xA, xB are weakly increasing on [a, â] and [z(a), z(â)], respectively. There, x̃A and x̃B are
constructed by rescaling xA and xB by a positive constant, and thus are increasing. They are
also trivially increasing on (â, a] and (z(â), z(a)], as x̃A, x̃B and xA, xB coincide there. It therefore
remains to check the pasting points â, z(â). For â, we verify this as follows:

x̃(â) = xA(â) ⋅ χ = xA(â) ⋅
xA(â+)
xA(â)

= xA(â+).

For z(â), we have:

x̃B(z(â)) = xB(z(â)) ⋅ χ = xB(z(â)) ⋅
xA(â+)
xA(â)

.

However, recall we assumed that xA(â
+
)

xA(â)
≤ xB(z(â)

+
)

xB(z(â))
, and thus:

x̃B(z(â)) ⋅ χ = xB(z(â)) ⋅
xA(â+)
xA(â)

≤ xB(z(â)) ⋅
xB(z(â)+)
xB(z(â))

= xB(z(â)+).

Improvement. The argument is analogous to that in the proof of Fact 3.

Fact 4 (Property 5). max[xA(1), xB(1)] = 1.

Proof. Suppose max[xA(1), xB(1)] < 1 and define:

χ = 1
max[xA(1), xB(1)]

, x̃A(a) = xA(a) ⋅ χ, x̃B(b) = xB(b) ⋅ χ.

Note x̃A, x̃B inherit piecewise continuous differentiability and monotonicity from xA, xB and
still implement z as rescaling them does not affect (I). They are both a.e. strictly above xA, xB
and thus, analogously to the preceding arguments, give higher total welfare than xA, xB.

It remains to show that the mechanism satisfying properties 1−5 exists for every boundary and
is unique. Let us start with uniqueness. By Lemma 2, every such boundary can be partitioned
into finitely many concave and convex regions. Let [v1, v1] be the last such region and fix
some strictly positive allocation of xA at point v1. Then properties 1 − 3 ensure that xA(v1)
pins down discounting allocations everywhere on (a, v1] and (b, z(v1)]. To see why, consider
first the last region [v1, v1]. Then the allocations on (v1, v1] and (z(v1), z(v1)] are pinned down
by xA(v1), the left-continuity of xA, xB at v1 and z(v1), and property 1 or 2 (depending on
whether it is a convex or concave region). If v1 = a, we are done. Otherwise, let [v2, v1] be the
next concave/convex region. The allocation on (v2, v1] is then pinned down by the right limits
xA(v+1), xB(z(v1)+), properties 1 or 2, and the ‘pasting’ property 3 which requires that one of xA
or xB be continuous at v1 or z(v1). Which one of xA and xB is pasted smoothly is pinned down
by the monotonicity requirement. An inductive argument then extends this reasoning to all the
convex/concave intervals.
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Thus, xA(v1) pins down the allocation everywhere on (a, v1] and (b, z(v1)]. Then, by property 4
and the ‘pasting’ property 3, the allocations xA(v1) and xB(z(v1)) also pin down the discount-
ing rules on (a, 1] or (b, 1], whenever such regions exist. Moreover, condition 5 tells us that the
largest allocation of xA, xB has to equal 1. This pins down the scale of the constructed alloca-
tion, and thus pins down xA(v1) itself. Consequently, properties 1 − 5 pin down the optimal
mechanism uniquely for every z.

Finally, the existence of such a mechanism is guaranteed by the properties of z given by Lemma
2. Indeed, consider any concave/convex region [v, v] and fix xA(v) > 0. Since the left-derivative
z′−(v) exists and is strictly positive, there exist allocation rules xA, xB that satisfy properties 1 or 2
on it (depending on whether the region is convex or concave). Moreover, if v > a, the existence of
a strictly positive right-derivative z′+(v) ensures that xA(v), xB(z(v)) satisfying these properties
are strictly positive. Consequently, the mechanism described above is indeed associated with
admissible allocation rules xA, xB.

A.4 Proof of Proposition 4

A.4.1 The optimal boundary is piecewise linear. I first prove that the optimal boundary z∗
cannot have strictly concave regions (by symmetry, the same then applies to convex regions).
I begin by showing that z∗ has to solve the following optimal control problem on every closed
interval where it is concave and twice continuously differentiable:

Problem 1. Choose the control u ∶ [v, v]→R− and state variables z, y, q ∶ [v, v]→R to maximize:

−∫
v

v
G(a)H(z(a)) da, (11)

subject to the following laws of motion:

z′(v) = y(v), y′(v) = u(v), q′(v) = g(v) ⋅H(z(v)),

and the following end-point constraints:

z(v) = z∗(v), z(v) = z∗(v), (12)

y(v) = z∗′+ (v), y(v) = z∗′− (v), (13)

q(v) = 0, q(v) = ∫
v

v
g(v) ⋅H(z∗(v)) dv. (14)

The states z and y correspond to the boundary and its derivative, the control u corresponds to
its second derivative, and q is introduced to capture the supply constraint.

Lemma 6. Let [v, v] be a concave region such that z∗ is twice continuously differentiable on it. Then z∗
has to solve Problem 1 on [v, v].

Proof. First, note that the optimal boundary z∗ is absolutely continuous on [v, v] as it is contin-
uously differentiable on this interval. Since it is also concave there, it is admissible in Problem
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1. Now, consider any z ∶ [v, v]→R that is admissible in Problem 1 and define:

z̃(v) =
⎧⎪⎪⎨⎪⎪⎩

z(v) if v ∈ [v, v],
z∗(v) elsewhere.

Note that z̃ satisfies properties 1− 3 of Lemma 2 and thus, by Lemma 3, is implementable.

Therefore, for z∗ to be optimal in the original problem, it must give higher total welfare (W’)
than any such z̃. In what follows I show that this is only true if z∗ solves Problem 1. I do so by
showing that for all z that are admissible in Problem 1, total welfare (W’) is identically equal
to (20) up to an affine transformation. This argument relies on the following corollary which is
given by a construction analogous to those in the proof of Lemma 3:

Corollary 2. Let z1, z2 ∶ [a, a] → R be implementable boundaries and suppose [v, v] is a concave region
for both z1 and z2. Suppose further that:

z1(a) = z2(a) for all a /∈ (v, v),

and that:
z′1+(v) = z′2+(v), z′1−(v) = z′2−(v).

Then the good-specific indirect utilities optimally implementing z1 and z2 agree everywhere except (v, v)
and (z1(v), z1(v)).

Intuitively, Corollary 2 says that perturbing a boundary inside an interval where it is concave
does not affect the indirect utilities optimally implementing it outside this interval. Thus, Corol-
lary 2 tells us that total welfare depends on z only through the following terms:

∫
v

v
UA(a) ⋅ g(a) ⋅H(z(a))da +∫

z(v)

z(v)
UB(b) ⋅G(z−1(b)) ⋅ h(b)db. (15)

A change of variables lets us rewrite the latter term as follows:

∫
z(v)

z(v)
UB(b) ⋅G(z−1(b))h(b) db = ∫

z−1
(z(v))

z−1(z(v))
UB(z(a))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=UA(a)

⋅z′(a) ⋅G(z−1(z(a)))h(z(a)) da

= ∫
v

v
UA(a) ⋅ z′(a) ⋅G(a)h(z(a))da.

Thus, (15) becomes:

∫
v

v
UA(a) [g(a)H(z(a))+ z′(a) ⋅G(a)h(z(a))] da.

Integrating by parts yields:

UA(v)G(v)H(z(v))−UA(v)G(v)H(z(v))−∫
v

v
U′A(a)G(a)H(z(a)) da.
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However, v, v, z(v), z(v) are fixed for all z admissible in Problem 1 and UA(v), UA(v) are fixed
by Corollary 2. Thus, for such z, (W’) is identically equal the following, up to a constant:

−∫
v

v
xA(a)G(a)H(z(a)) da. (16)

Finally, by Lemma 3, xA is constant on the concave interval [v, v]. Moreover, its value there is
pinned down by z′+(v), which is fixed for all admissible z. Thus, total welfare (W’) is identically
equal to (11) up to an affine transformation.

We can now show that z∗ is piecewise linear. Suppose towards a contradiction that z∗′′(v̂) < 0
for some v̂. Since z∗′′ is piecewise continuous, there must be some interval [v, v] around v̂ such
that z∗′′(v) < 0 on it. Consider Problem 1 for that interval. As shown, z∗ restricted to [v, v]must
be the optimal z for that problem. Let (z∗, y∗, q∗, u∗, ξ, ϕ, η) be optimal the collection of states,
controls and costates associated with z∗. The Hamiltonian for this problem is:

H = −G(a)H(z∗(a))+ µ(a) ⋅ g(a)H(z∗(a))+ ξ(a) ⋅ y(a)+ ϕ(a) ⋅ u(a), (17)

where µ(a) is the costate on q, ξ is the costate on z and ϕ is the costate on y. By the Maximum
Principle, we then have:

µ′(a) = 0.

Since µ(a) is constant, I will simply write it as µ. Moreover, we have:

ξ′(a) = − (−G(a)+ µ ⋅ g(a)) h(z∗(a)) = (G(a)− µ ⋅ g(a)) h(z∗(a)), (18)

and:
ϕ′(a) = −ξ(a), (19)

giving:
ϕ′′(a) = −ξ′(a) = − (G(a)− µ ⋅ g(a)) h(z∗(a)).

The Maximum principle further tells us that controls u∗(v) < 0 must maximize the Hamiltonian
everywhere in (v, v). However, the Hamiltonian depends on the control linearly and so the
optimal control can be interior only if ϕ(v) = 0 on (v, v). In particular, this means that ϕ′′(a) has
to be zero in that region. Since h(z(a)) > 0, this gives:

0 = −G(a)+ µ ⋅ g(a) ⇒ G(a)
g(a)

= µ,

which cannot hold since G/g is strictly increasing. Thus, z∗′′(a) = 0 wherever z∗ is twice-
differentiable. Since it was piecewise twice continuously differentiable, it follows that z∗ is
piecewise linear.

A.4.2 The optimal boundary is linear. We know the optimal boundary z∗ is piecewise linear,
so it is also absolutely continuous on all of [a, a]. This lets us apply a similar optimal control
method on the initial convex/concave region [a, v]. Assume without loss that it is concave.
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Problem 2. Choose the control u ∶ [a, v] → R−, state variables z, y, q ∶ [a, v] → R, a number of jumps
n ∈N, jump locations and jump sizes, ai ∈ [a, v] and vi ∈R− for i ∈ {1, . . . , n} to maximize:

−∫
v

a
G(a)H(z(a)) da. (20)

subject to the following laws of motion:

z′(v) = y(v), y′(v) = u(v), q′(v) = g(v) ⋅H(z(v)),

the jump function for every i:
vi = y+(ai)− y−(ai),

and the following end-point constraints:

z(a) = z∗(a), z(v) = z∗(v), (21)

y(a) free, y(v) = z∗′− (v), (22)

q(a) = 0, q(v) = ∫
v

a
g(v) ⋅H(z∗(v)) dv. (23)

We then get the following lemma whose proof is analogous to that of Lemma 6:

Lemma 7. Let [a, v] be a concave interval of z∗. Then the optimal boundary z∗ on this interval has to
solve Problem 2.

Take v such that [a, v] is the largest concave interval starting with a. Since z∗ is piecewise linear,
the largest initial concave interval either covers all of [a, a], or consists of at least two linear
pieces. In what follows, I show that the solution to Problem 2 cannot have jumps, and thus that
the latter case cannot happen. This in turn proves that z∗ is linear.

Let us now analyze the necessary conditions for z∗ restricted to [a, v] to solve Problem 2. The
Hamiltonian and costate equations for this problem are the same as for Problem 1, and given
by (17), (18) and (19), and µ, the costate for q, is also constant. However, the initial value of y is
now free, so its costate at the beginning of the interval is zero (see Neustadt (1976), p. 234).

ϕ(a) = 0. (24)

Now, by the Maximum Principle with jumps (see Seierstad and Sydsaeter (1986), Theorem 7, p.
196-197) we know that:

1. ϕ(⋅) is continuous and differentiable except possibly at jump points,

2. ϕ(a∗) = 0 when a∗ is a jump point,

3. At all a where there is no jump, ϕ(a) ≥ 0.
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I now show that ϕ is twice continuously differentiable on (a, v). For a other than jump points
this follows because:

ϕ′(a) = −ξ(a)−∫
a

a
(G(t)− µ ⋅ g(t)) h(z(t))dt. (25)

Now, let a∗ ∈ (a, v) be a jump point. Then (25) holds on some open neighborhoods to the left
and right of a∗. We know that ϕ′(a) is differentiable there, with:

ϕ′′(a) = − (G(a)− µ ⋅ g(a)) h(z(a)),

which, just like ϕ′(a), inherits continuity from g, h and G. Moreover, we see that:

lim
a→a∗+

ϕ′(a) = lim
a→a∗−

ϕ′(a), lim
a→a∗+

ϕ′′(a) = lim
a→a∗−

ϕ′′(a),

where these limits are finite. Corollary 1 then tells us that ϕ′(a∗), ϕ′′(a∗) also exist and equal to
these limits, and thus that ϕ is indeed twice continuously differentiable on (a, v).

Thus, if there is an interior jump at a∗ ∈ (a, v), we must have ϕ(a∗) = 0 there. Since we also
know that ϕ(a) ≥ 0 outside of jump points, we must therefore have ϕ′(a∗) = 0 and ϕ′′(a∗) ≥ 0
there. I will show this cannot happen. Note that:

ϕ′′(a) = − (G(a)− µ g(a)) h(z(a))

= (µ g(a)−G(a)) h(z(a))

= (µ − G(a)
g(a)

) h(z(a)) ⋅ g(a).

Recall that G(a)/g(a) is strictly increasing by Assumption 1. Thus, ϕ′′(a) is either strictly nega-
tive everywhere on (a, v) or positive until some ã ∈ (a, v) and then negative forever after. In the
former case, ϕ′′(a) < 0 for all a ∈ (a, v), and so ϕ′′(a∗) ≥ 0 can never hold for an interior a∗. In
the latter case, there exists some ã ∈ (a, v) such that:

ϕ′′(a)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

> 0, if a < ã,
= 0, if a = ã,
< 0, if a > ã.

Now, I show that for every a ∈ (a, ã]we have ϕ′(a) > 0. For suppose ϕ′(a) ≤ 0 for some a ∈ (v, ã].
Then, since ϕ′′(a) > 0 on (a, ã), it must be that ϕ′(a) < 0 everywhere on (a, ã). But since ϕ(a) = 0,
this would mean that for all a ∈ (a, ã]:

ϕ(a) = ϕ(a)
´¸¶
=0

+∫
a

a
ϕ′(t)
´¸¶
<0

dt < 0,

which cannot be as ϕ(a) ≥ 0 on the whole interval by the Maximum Principle with jumps.
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Thus, ϕ′(a) > 0 for a ∈ (a, ã] and ϕ′′(a) < 0 for all a ∈ (a, ã]. Therefore there is no a∗ ∈ (a, a) for
which ϕ′(a∗) = 0 and ϕ′′(a∗) ≥ 0. This in turn means that z∗ consists of a single linear piece on
[a, v], which completes the proof.

A.5 Proof of Lemma 4

I first show that the optimal mechanism allocates both goods. I do so by finding the optimal
mechanism allocating only one good and showing that it can be improved by also allocating
some of the other one.

Consider a mechanism allocating only A. Any feasible mechanism must allocate it to at most
µA ∈ (0, 1) agents. A single-crossing argument then tells us there exists some a ∈ [0, 1] such that:

y(a, b)
⎧⎪⎪⎨⎪⎪⎩

= A, if a > a,
= ∅, if a < a.

Let a∗ ∈ (0, 1) be the cutoff for which the supply constraint binds. By Myerson’s Lemma we can
then reduce the problem to choosing some pB ≥ 0, a ∈ [a∗, 1] and an increasing xA ∶ (a, 1]→ [0, 1].
Total welfare then becomes:

W = ∫
1

a
UA(v) dG(a) where UA(a) = ∫

a

0
xA(v)da,

which increases pointwise in xA(a). Thus, the optimal single-good mechanism features a = a∗
and xA(a) = 1 for all a > a∗. Note that the mechanism can be implemented by offering only
xA = 1 at the price of a∗.

Now, augment this mechanism by also offering good B with zero wait time at price 1− ϵ, for ϵ >
0. I first show the new mechanism is strictly better, and then that it is feasible for ϵ sufficiently
small. Adding this option cannot reduce welfare, so we must just show that it strictly benefits
a positive mass of types. But all types with a < a∗ and b > 1 − ϵ would be getting nothing (and
hence utility zero) under the old mechanism and get strictly positive utility now, so the new
mechanism is indeed a strict improvement.

To see why the mechanism is feasible, note that good B will be taken only by agents with
b ≥ 1 − ϵ, of whom there are 1 −H(1 − ϵ). By the continuity of H, this mass approaches zero as
ϵ → 0, and thus is below µB for ϵ small enough. Since only agents with a ≥ a∗ get the A-good,
the supply constraints (S) hold.

Thus, the optimal mechanism allocates strictly positive amounts of both goods and, by Lemma
1, has a ‘boundary structure’. I now show that the optimal mechanism allocates the whole
supply of both goods. By Lemma 4, we can restrict attention to mechanisms with a linear
boundary. Such mechanisms offer only two options: good A with discounting xA at price pA
and good B with discounting xB at price pB. Now, suppose one of the supply constraints (S) is
slack for such a mechanism; assume without loss this is the case for good A.

Since the mechanism allocates a strictly positive amount of good A but its supply constraint is
slack, the price of good A has to be interior: pA ∈ (0, 1). Now, consider an alternative mecha-
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nism offering xA, xB for prices pA − ϵ and pB, respectively. This mechanism improves the util-
ities of all agents, and strictly so for the positive mass of agents who chose good A under the
original mechanism. It therefore suffices to show the alternative mechanism is feasible for ϵ > 0
sufficiently small. Note that the mass of agents who take A under the new mechanism is:

∫ 1xAa−(pA−ϵ)>max[0, xBb−pB]
dF(a, b),

since the set of indifferent agents is zero-mass. Moreover:

lim
ϵ→0∫ 1xAa−(pA−ϵ)>max[0, xBb−pB]

dF(a, b) = ∫ 1xAa−pA>max[0, xBb−pB]
dF(a, b),

which is the mass of agents who got good A under the original mechanism. Since the supply
constraint (S) for good A was slack, it remains slack for the alternative one when ϵ is sufficiently
small. Similarly, reducing the price for good A can only relax the supply constraint for good B,
and thus (S) is satisfied for ϵ small enough.

A.6 Proof of Lemma 5

Let zs ∶ [as, bs]→ [as, bs] denote a linear boundary with slope s, that is:

zs(a) = bs + s ⋅ (a − as) for a ∈ [as, as],

where as and bs are chosen so that the supply constraints (S) bind for both goods (Figure 7a).
Since the type distribution is atomless, such a boundary zs exists for any s > 0. Let us also define
an extended s-sloped boundary z̃s as follows:

z̃s(a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if a < as,
zs, if a ∈ [as, as],
1, if a > as.

That is, z̃s equals to zs on the latter’s domain, takes value zero below it and takes value 1 above
it (Figure 7b). Note that for every s, s′ > 0 such that s > s′, the boundaries gs and gs′ cross exactly
once, with gs′ crossing from above (Figure 8). This in turn implies that as is decreasing in s
and bs is increasing in s. Moreover, the lowest participating values of the two boundaries must
also satisfy as′ ≤ as and bs′ ≥ bs. Otherwise, both supply conditions in (S) could not hold with
equality for both boundaries. Finally, since the distribution F is atomless, bs, as and bs, as must
be differentiable functions of s.

Before proving that the optimal boundary has slope 1, I show a useful auxiliary fact:

Fact 5. Q(s), defined below, is strictly decreasing in s for s ≥ 1:

Q(s) ∶= ∫
1

0
G(a)H(z̃s(a)) da.
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Figure 7a: s-sloped boundary zs.
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Figure 7b: s-sloped extended boundary z̃s.
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Figure 8: Let s > s′. Then the s′-sloped boundary zs′ crosses the s-sloped boundary
zs once, and from above.

Proof. Fix some s1, s2 ≥ 1 such that s1 > s2 and consider the difference:

Q(s1)−Q(s2) = ∫
1

0
G(a)H(z̃s1(a)) da −∫

1

0
G(a)H(z̃s2(a)) da

= ∫
1

0

G(a)
g(a)

[g(a) (H(z̃s1(a))−H(z̃s2(a)))]da.

Since s1 > s2, z̃s2 crosses z̃s1 only once, and from above. Let a∗ be their crossing point. We can
then write the LHS as:

∫
a∗

0

G(a)
g(a)

g(a)(H(z̃s1(a))−H(z̃s2(a)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤0

da +∫
1

a∗
G(a)
g(a)

g(a)(H(z̃s1(a))−H(z̃s2(a)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0

da,

where the inequalities hold strictly in some neighborhood of a∗. Since G(a)/g(a) is strictly
increasing by Assumption 1, we obtain the following bound:
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Q(s1)−Q(s2) >
G(a∗)
g(a∗) ∫

a∗

0
g(a)(H(z̃s1(a))−H(z̃s2(a))) da

+ G(a∗)
g(a∗) ∫

1

a∗
g(a)(H(z̃s1(a))−H(z̃s2(a))) da

= G(a∗)
g(a∗)

(∫
1

0
g(a)H(z̃s1(a)) da −∫

1

0
g(a)H(z̃s2(a)) da) = 0.

The difference is zero because (S) held with equality for both boundaries.

I now show that all boundaries with slope s > 1 are dominated by some other boundary with
a lower slope. Then, by symmetry, all boundaries with slope s < 1 will be dominated by some
boundary with a higher slope. Consequently, s = 1 will be uniquely optimal. Denote by xs

A, xs
B

the constant discounting levels which optimally implement zs. Recall also that if s > 1, xs
A = 1

and xs
B = 1/s. Fix any boundary zs1 with s1 > 1 and recall that either as1 = 1 or bs1 = 1. Consider

two cases.

Case 1: as1 ≠ 1. We can use (W’) to write total welfare as follows:

W[zs] = ∫
1

as
∫

zs(min[a,as])

0
f (a, v)dv ⋅UA(a) da + ∫

1

bs
∫

z−1
s (min[b,bs])

0
f (v, b)dv ⋅UB(b) db. (W’)

Since as ≠ 1, we must have bs = 1 and so W[zs] becomes:

W[zs] = ∫
as

as

UA(a) g(a)H(zs(a)) da +∫
zs(as)

zs(as)
UB(b)G(z−1

s (b))h(b) db

+∫
1

as
UA(a) g(a)H(1) da.

A change of variables yields:

W[zs] = ∫
as

as

UA(a) ⋅ (g(a)H(zs(a))+ z′s(a) ⋅G(a)h(zs(a))) da

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=K

+∫
1

as
UA(a) ⋅ g(a)H(1)da

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=L

.

Let us now integrate K and L by parts. This gives:

K = UA(as) ⋅G(as)H(z(as))−UA(as) ⋅G(as)H(zs(as))−∫
as

as

U′A(a) ⋅G(a)H(zs(a)) da.
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Recall that UA(as) = 0, U′A(a) = xs
A = 1, and H(zs(as)) = H(bs) = H(1) = 1. Thus, we get:

K = UA(as) ⋅G(as)−∫
as

as

G(a)H(zs(a)) da.

Integrating L by parts gives:

L = UA(1)−UA(as)G(as)−∫
1

as
G(a) ⋅H(1) da.

Summing K and L, we get:

W[zs] = UA(1)−∫
as

as

G(a)H(zs(a)) da −∫
1

as
G(a)H(1) da

= 1− a −∫
as

as

G(a)H(zs(a)) da −∫
1

as
G(a)H(1) da,

where the equality follows since UA(1) = ∫
1

a xAda = 1− a by the envelope theorem. We can now
express W[zs]more concisely by writing it using the extended boundary z̃s:

W[zs] = 1− as −∫
1

0
G(a)H(z̃s(a)) da = 1− a −Q(s).

Now, since as1 ≠ 1 and bs, as change continuously in s, there exists s2 ∈ (s1, 1) such that as2 ≠ 1.
Then also bs2 ≠ 1 and thus we can apply the formula derived above to both zs1 and zs2 :

W[zs1] = 1− as1
−Q(s1), W[zs2] = 1− as2

−Q(s2).

It thus suffices to show that W[zs1] < W[zs2]. However, s1 > s2, so as1
> as2

. Moreover, Fact 5
tells us that Q(s1) > Q(s2), which completes the proof.

Case 2: as1 = 1. Analogously to the previous case, we can write total welfare as:

W[zs] = ∫
1

as

UA(a) ⋅ (g(a)H(zs(a))+ z′s(a) ⋅G(a)h(zs(a))) da

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=K

+∫
1

bs
UB(b) ⋅G(1)h(b)db

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=L

.

Let us now integrate K and L by parts. This gives:

K = UA(1) ⋅G(1)H(zs(1))−UA(as) ⋅G(as)H(z(as))−∫
1

as

U′A(a) ⋅G(a)H(zs(a)) da.
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Recall that UA(as) = 0, U′A(a) = xs
A = 1, UA(1) = UB(bs) and H(z(1)) = H(bs). Thus, we get:

K = UB(bs) ⋅H(bs)−∫
1

as

G(a)H(zs(a)) da = UB(bs) ⋅H(bs)−Q(s).

Now, integrating L by parts gives:

L = UB(1)−UB(b)H(b)−∫
1

b
U′B(b)H(b) db,

but since U′B(b) = xs
B = 1/s and UB(1) = 1

s (1− bs), we have:

L = 1
s
(1− bs)−UB(bs)H(bs)−

1
s ∫

1

bs
H(b) db.

Summing K and L, we get:

W[zs] =
1
s
(1− bs)−

1
s ∫

1

bs
H(b) db −Q(s). (26)

Now, take any s2 ∈ [1, s1). Since is as decreasing in s and as1 = 1, this means that as2 = 1 as well.
Therefore, (26) describes total welfare under both zs1 and zs2 .

We now show that W[zs2] > W[zs1]. Indeed, Q(s2) < Q(s1) by Fact 5. It therefore suffices to
show that M(s), defined below, is decreasing in s:

M(s) ∶= 1
s
(1− bs)−

1
s ∫

1

bs
H(b) db.

Recall that bs, bs change differentiably in s, and so it suffices to show that M′(s) < 0. Note:

M′(s) = − 1
s2 (1− bs −∫

1

bs
H(b) db)− 1

s
d
ds
(bs +∫

1

bs
H(b) db) ,

so it suffices to show that:

−1
s
(1− bs −∫

1

bs
H(bs) db) < b′s − b

′

s(s) ⋅H(bs).

Recall that b
′

s ≥ 0, so we can strengthen the inequality to:

−1
s
(1− bs −∫

1

bs
H(b) db) < b′s − b

′

s(s).
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Furthermore, we have bs = bs + s ⋅ (1− as), so:

b
′

s = 1− as + b′s − s ⋅ a′s
≤ 1− as + b′s,

giving an even stronger inequality:

−1
s
(1− bs −∫

1

bs
H(b) db) < b′s − (1− as + b′s) = −(1− as).

Now, since s ⋅ (1− as) = (bs − bs), the above inequality is equivalent to:

−(1− bs −∫
1

bs
H(b) db) < −(bs − bs),

bs +∫
1

bs
H(b) db + bs − bs < 1,

∫
1

bs
H(b) db + bs < 1.

which holds because H is a cdf.
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